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1)1. Introduction

Recent advances in artificial intelligence (AI) have sti-

mulated the development of audio manipulation techni-

ques that can create realistic and imitated speech[1]. This 

technology, often referred to as “audio deepfakes,” or 
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“deepvoice,” utilizes machine learning (ML) or deep learn-

ing (DL) algorithms to analyze a target speaker's voice and 

synthesize new audio files that mimic their speech 

patterns. This technology can be used in beneficial ways 

such as generating audiobooks and creating assistive tools 

for individuals with hearing impaired[1]. However, the 

deepvoice technique also presents significant risks when it 

is used for criminal purposes. A 2023 prediction made by 

the American IT research firm Gartner suggests that one- 

fifth of financial fraud cases could involve this technology 

in the near future[2].

The increasing prevalence of audio deepfakes provokes 

the urgency of developing robust detection technologies. 

To prevent criminal danger using audio deepfake, re-

searchers have actively proposed various detection algo-
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rithms using machine learning techniques. However, ex-

isting methods often struggle with generalizability, achiev-

ing subpar performance when confronted with unseen da-

ta[1]. The present study aims to close the gap in the liter-

ature by proposing a deep learning model specifically de-

signed to enhance audio deepfake detection accuracy and 

improve its ability to adapt to unseen data. By proposing 

new modeling methodologies on existing detection algo-

rithms, we believe that the proposed model mitigate the 

potential harms associated with audio deepfakes. 

One approach to detect audio deepfake using a deep 

learning algorithm is AASIST (Audio Anti-Spoofing using 

Integrated Spectro-Temporal Graph Attention Networks), 

which works by analyzing both the frequency and time in-

formation in an audio raw-waveform and the relation-

ships between them[1, 3]. AASIST's strong performance in 

competitions like ASVspoof 2019 and ADD (Audio Deep 

synthesis Detection) challenge 2023 demonstrates the val-

ue of GNNs for audio deepfake detection[1]. Building on 

AASIST's success, we propose CoNSIST, a new GNN based 

model that incorporates three additional methodologies, 

Squeeze-and-Excitation, Posional Encoding, and Re for-

mulated HS-GAL(heterogeneous stacking graph attention 

layer), to further enhance deepfake detection accuracy.

2. Related Works

2.1 Research on the Detection of Audio Deepfakes

There are two main strategies for detecting audio deep-

fakes: pipeline and end-to-end algorithms[1]. Pipeline ap-

proaches break down the detection process into two 

steps. First, specific characteristics or features are identi-

fied in the audio. Then, these features are used to classify 

the audio as real or fake. Machine learning algorithms 

used in pipeline detectors include linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA), 

support vector machines (SVM), K-nearest neighbors 

(KNN), and random forests[4-6]. Currently, the Q-SVM 

method by Kumar-Singh and Singh is the most successful 

machine learning model for audio deepfake detection[7]. 

Pipeline approaches offer flexibility in designing how fea-

tures are extracted, but they can be slow to handle new 

types of audio data. 

Unlike separate pipeline approaches, end-to-end de-

tection models learn the entire process all at once using 

a deep neural network[1]. This allows to automatically 

learn important features from the audio and adapt to un-

seen data, however, requires a large amount of computing 

resources. There are three main algorithms of end-to-end 

models: CNN[8], Transformers[9], and GNN-based[3, 10]. 

CNN-based models are composed of a single convolu-

tional neural network and multi-layer perceptron layer. 

While these models have demonstrated strong capabilities 

in identifying voice conversion (VC) and text-to-speech 

(TTS) manipulations, they suffer from limited ability to ac-

curately detect other forms of audio deepfakes due to 

weak generalization performance. ResNet-based models 

are an improvement over traditional CNN-based models 

that utilize residual mapping. They have demonstrated a 

higher level of trainability and have exhibited promising 

levels of performance. Transformer-based models are 

composed of convolution layers and transformer’s encoder 

blocks. They capture both local and global features in the 

audio data, resulting in superior generalization perfor-

mance.

Among the different model types, GNN-based models 

stand out for their ability to detect audio deepfakes[11]. 

GNNs excel at analyzing the complex relationships be-

tween data points, which are represented as graphs. Two 

well-known examples of GNN-based models used for au-

dio deepfake detection are RawGAT-ST[10] and AASIST 

[3]. RawGAT-ST extracts both sound frequency and tim-

ing information from the audio raw-waveform and ana-

lyzes the connections between them using the attention 

mechanism[10]. AASIST, a more recent model based on 

RawGAT-ST, goes a step further. It uses special graph op-

erations to model the relationships between these features 

within two separate graphs. This allows AASIST to capture 

information that indicates the presence of audio deep-

fakes, resulting in high detection accuracy. For this study, 

we chose AASIST as the baseline model and built upon it 

by incorporating three additional components to enhance 

its performance.

2.2 Architecture of AASIST

CoNSIST, the suggested model in this study, takes 

AASIST as a basis model and adds three more components 

to it to enhance deepfaked audio detection performance. 

We chose AASIST, an end-to-end model, as our baseline 

because end-to-end models generally exhibit better gen-

eralization performance compared to pipeline-based ap-

proaches[1]. Among end-to-end models, AASIST has dem-

onstrated exceptional performance in various audio deep-

fake competitions, performing best in the ASVspoof 2019 
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LA dataset and ADD challenge 2023. Therefore, we chose 

AASIST as our baseline and conducted further research to 

improve its performance in audio deepfake detection. In 

this section, we first explain the overall architecture of 

AASIST and its operation prior to describing the primary 

elements of CoNSIST.

AASIST uses a RawNet2-based encoder to convert the 

raw-waveform of an audio into a 3-dimensional feature 

map. RawNet2 was first proposed by J. Jung, S. Kim, and 

H. Shim[12] for speaker verification using raw waveforms. 

H. Tak, J. Jung, and J. Patino[13] and H. Tak, J. Patino, 

and M. Todisco[11] modified RawNet2 for audio deepfake 

detection, and AASIST[3] uses an encoder based on this 

modified RawNet2. RawNet2 consists of a single sinc con-

volution layer and six residual blocks. The input raw wave-

form is passed through residual blocks to be converted in-

to a 3D feature map of size (C, S, T): C represents the 

number of channels, S represents the number of spectral 

bins, and T represents the number of temporal bins. 

Finally, the encoder outputs a feature map of size (64, 23, 

29).

The 3D feature map is divided into spectral and tempo-

ral components and converted into two 2D tensors, each 

with dimensions (C, S) and (C, T). These tensors are then 

converted into graph structures using a graph module 

based on graph attention layers and graph pooling lay-

ers[3]. In this process, all nodes in each graph are con-

nected by edges, and the strength of these edges is 

learned through attention in the graph module. The graph 

pooling layer then retains important node information and 

discards unnecessary nodes. Finally, the spectral graph is 

transformed from (64, 23) to (64, 11) and the temporal 

graph is transformed from (64, 29) to (64, 20). 

After passing through the encoder and graph modules 

and new spectral and temporal graphs are generated, the 

nodes of each graph are combined to create a new graph 

denoted as 


. In this process, all nodes are connected by 

edges, and this combined graph 


 is called a heteroge-

neous graph[14]. According to the authors, this integration 

of two different graphs allows for the modeling of two 

types of graph representations simultaneously. Then, at-

tention between all homogeneous and heterogeneous no-

des are performed. During this process, a stack node that 

accumulates information from both graphs is created. 

This process of performing three attention operations and 

creating a stack node in a heterogeneous graph is called 

HS-GAL (Heterogeneous Stacking-Graph Attention Layer). 

The HS-GAL layer is passed through twice and the stack 

node created in the first HS-GAL layer initializes the stack 

node in the second HS-GAL layer. Additionally, as two 

HS-GAL layers performed, two nodes from each 

 and 



are extracted through element-wise and node-wise max-

imum operations, and one stack node is also extracted, 

and these are concatenated to perform the final classi-

fication task.

3. Architecture of CoNSIST

AASIST[3] extracts a 3D feature map from the raw 

waveform of the audio using an encoder block consisting 

of six residual blocks, and effectively utilizes the charac-

teristics of both spectral and temporal graphs through a 

Fig. 1. CoNSIST Architecture
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GAN[15] structure. AASIST uses an HS-GAL structure to 

enhance the attention between 

 and 


 nodes and two 

stack nodes. However, our model CoNSIST demonstrated 

enhanced audio deepfake detection performance than the 

AASIST. In this section, we will describe the three main 

modeling methodologies of our CoNSIST.

3.1 SE Encoder

To improve the model’s ability to extract discriminative 

features from raw audio waveforms, we incorporated 

Squeeze-and-Excitation[16] from Rawformer[9] into the 

encoder stage of the AASIST model[3]. The AASIST en-

coder utilizes a series of residual convolution operations 

within six residual blocks to transform the raw waveform 

into a 3D feature map. We strategically inserted the SE 

block after each residual convolution within these blocks

The SE block operates with three stages: squeeze, ex-

citation, and scale[16]. In the squeeze stage, global aver-

age pooling is applied to each channel of the feature 

map, compressing the feature information into a single 

scalar value. This value represents the overall importance 

of channel. The excitation stage then employs a 1x1 con-

volution layer to generate weights for each channel. These 

weights essentially capture the relative importance of 

each channel based on the information obtained in the 

squeeze stage. Finally, in the scale stage, these learned 

weights are used to rescale the original feature map ele-

ment-wisely, emphasizing the channels containing more 

important features for deepfake detection.

By incorporating the SE block into the baseline en-

coder, the model gains the capability to dynamically learn 

the importance of different feature channels. This allows 

the model to focus on the most discriminative features for 

audio deepfake classification, potentially leading to im-

proved performance compared to the baseline encoder 

that solely relies on residual convolutions.

3.2 Positional Encoding

To enhance the model's ability to capture the inherent 

order within the extracted features, we incorporated posi-

tional information during the conversion of the 3D feature 

map into separate spectral and temporal graphs. By add-

ing a vector containing positional information for each 

axis (spectral and temporal) of the feature map in an ele-

ment-wise manner, both graphs are hypothesized to im-

prove the model's generalization performance and broad-

en its applicability. By explicitly providing the model with 

knowledge about the order and changes within each 

graph, we facilitate its ability to effectively learn and uti-

lize the information contained within both spectral and 

temporal representations.

Positional encoding, leveraging sine and cosine func-

tions as in the Transformer architecture[18], was chosen 

over positional embedding. This decision aimed to avoid 

the potential for increased learning complexity and ex-

tended training times associated with self-learning posi-

tional information vectors through embedding techni-

ques[17].

3.3 Reformulated HS-GAL

The HS-GAL layer within the AASIST model employs 

two stack nodes and performs three distinct attention op-

erations: self-attention for both the spectral and temporal 

graphs, and attention between these two graphs[3]. 

However, we posit that the self-attention operations for 

the individual spectral and temporal graphs may be 

redundant. Graph module already performs self-attention 

to learn the strength of connections between nodes within 

each graph and the subsequent pooling layer discards in-

formation from less important nodes. Consequently, per-

forming self-attention again within the HS-GAL layer 

might not significantly impact the final classification 

performance.

To adjust this potential redundancy and enhance model 

efficiency, we propose a modified HS-GAL layer in our 

approach. This modified layer removes the self-attention 

operations for the spectral and temporal graphs, focusing 

solely on the attention between the two graphs. This re-

duces the number of unnecessary parameters within the 

model. Additionally, we increase the number of stack no-

des from two to four in the HS-GAL layer. This allows the 

model to consider a more diverse range of information 

from the feature graphs, potentially leading to improved 

performance compared to the baseline AASIST architec-

ture.

4. Experiments and results

4.1 Datasets and Metrics

To ensure a fair comparison between the CoNSIST and 

the baseline model, we employed the identical LA (Logical 

Access) dataset utilized in the ASVspoof 2019 challenge. 

The training set contains 2,580 bonafide and 22,800 

spoofed audio samples generated using a combination of 
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4 TTS and 2 VC techniques. The development set includes 

2,548 bonafide and 22,296 spoofed samples. Finally, the 

evaluation set comprises 7,355 bonafide and 63,882 

spoofed samples generated using a wider variety of 7 TTS 

and 6 VC methods[19].

For evaluation, we adopted the same metrics used in 

the ASVspoof 2019 challenge: minimum tandem detection 

cost function (min t-DCF) and equal error rate (EER). A 

lower value for both metrics indicates a better perfor-

mance. Min t-DCF prioritizes the accurate classification of 

spoofed audio[20], while EER assesses the model's ability 

to achieve a balanced performance in identifying both 

bonafide and spoofed audio samples.

4.2 Experiments Settings

To comprehensively evaluate the effectiveness of the 

three proposed methodologies incorporated within 

CoNSIST (SE block, positional encoding, and Re-formul-

ated HS-GAL), we conducted experiments using all possi-

ble combinations of these methodologies. A detailed 

breakdown of these combinations is provided in Table 5.

To ensure a fair and objective comparison with the 

baseline, we replicated the experimental conditions em-

ployed in the original study. This included utilizing the 

identical hyperparameters as outlined in Tables 2 and 3. 

Each of the individual methodologies was evaluated in a 

single experiment and all other combinations were eval-

uated three times to calculate both average and best 

values. Since the performance can differ depending on the 

random seed, each experiment used a different random 

seed to calculate min t-DCF and EER[21]. 

4.3 Results

Under the experimental conditions specified in Table 4 

and as the results shown in the Table 6, the baseline 

AASIST model achieved an average min t-DCF of 0.0393 

and an average EER of 1.37. The best min t-DCF and best 

EER obtained for AASIST were 0.0382 and 1.31. When ex-

perimenting with each of the three additional compo-

nents, the model with positional encoding showed im-

proved performance over the baseline AASIST. When test-

ing models that combined two of the three components, 

the combinations of SE-encoder with positional encoding 

and positional encoding with Re HS-GAL both demon-

strated better performance than the AASIST.

Our model CoNSIST, which includes all three new com-

ponents, had about 230k parameters and achieved an 

average min t-DCF of 0.0288 and an average EER of 0.94, 

surpassing the performance of the original AASIST. The 

best min t-DCF and best EER also showed significant im-

provement at 0.0267 and 0.89.

Even when we compare to the results reported by the 

authors of AASIST, our model outstands the outcome of 

audio deepfake detection. As shown in Table 1, A07 to 

A19 represent various speech synthesis techniques, with 

the AASIST authors conducting three experiments each to 

determine their respective average and best values[3]. 

CoNSIST outperforms AASIST in detecting audio deep-

fakes across all speech synthesis techniques, except for 

A09, A13, A14, and A15. As shown in the table 6 and 7, 

CoNSIST surpasses AASIST in both average and best val-

ues for min t-DCF, and average EER values, and outper-

forms in audio deepfake detection compared to other 

algorithms.

Model config

batch size 24

num_epochs 100

number of samp 64,600

first_convolution 128

filters [70, [1, 32], [32, 32], [32, 64], [64, 64]]

pool_ratios [0.5, 0.7, 0.5, 0.5]

Table 2. Model Configuration

Optimizer config

optimizer Adam

baseline lr 0.0001

minimum lr 0.000005

betas [0.9, 0.999]

weight_decay 0.0001

scheduler cosine

Table 3. Optimizer Configuration

System A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 Min t-DCF EER(%)

AASIST 0.80 0.44 0.00 1.06 0.31 0.91 0.1 0.14 0.65 0.72 1.52 3.40 0.62 0.0374(0.0275) 1.13(0.83)

CoNSIST 0.66 0.27 0.01 0.98 0.23 0.71 0.14 0.20 0.71 0.46 1.48 2.28 0.48 0.0288(0.0267) 0.97(0.89)

Table 1. Comparison of CoNSIST and AASIST
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Experiment environment

OS CentOS Linux 6 (Core)

CPU XEON#W-2135

GPU Galaxy GeForce RTX 3090 SG D6X

RAM 16GB * 8

HDD SSD 512GB, HDD 8TB

Table 4. Experiment Environment

Model explanation

Only SE AASIST + Squeeze and Excitation

Only Pos AASIST + Positional Encoding

Only Re HS-GAL AASIST + Reformulated HS-GAL

Con_v1 AASIST + SE + Pos

Con_v2 AASIST + Pos + Re HS-GAL

Con_v3 AASIST + SE + Re HS-GAL

CoNSIST(ours) AASIST + SE + Pos + Re HS-GAL

Table 5. Descriptions of Each Model

System Min t-DCF EER(%)

AASIST(baseline) 0.0393 (0.0382) 1.37 (1.31)

Only SE 0.0447 1.36

Only POS 0.0345 1.22

Only Re HS-GAL 0.0429 1.34

Con_v1 0.0373 (0.0344) 1.2646 (1.18)

Con_v2 0.0339 (0.0317) 1.19 (1.00)

Con_v3 0.0489 (0.0422) 1.45 (1.32)

CoNSIST(ours) 0.0288 (0.0267) 0.94 (0.89)

Table 6. Results of Each Model: avg(best)

System Min t-DCF EER(%)

CoNSIST 0.0267 0.89

AASIST 0.0275 0.83

LCNN-LSTM-sum 0.0524 1.92

Capsule network 0.0538 1.97

GMM 0.0904 3.50

ResNet18-OC 0.0590 2.19

PC-DARTS 0.0914 4.96

MCG-Res2Net50 0.0520 1.78

SENet 0.0368 1.14

Table 7. Results of Different Models

5. Conclusion

This study proposes CoNSIST, an enhanced audio deep-

fake detection model that builds upon the GNN-based 

AASIST model. CoNSIST integrates three key methodolo-

gies to improve upon AASIST: (i) Squeeze-and-Excitation 

blocks for more efficient feature extraction, (ii) positional 

encoding to capture the inherent order within the ex-

tracted features, and (iii) a reformulated HS-GAL layer 

that eliminates redundant operations and allows for proc-

essing of more diverse information. Experimental results 

confirm that CoNSIST outperforms AASIST under identical 

experimental conditions. Additionally, CoNSIST demon-

strates greater stability in its performance across various 

voice synthesis techniques. However, our study has few 

limitations. First, the model’s performance has been eval-

uated on a limited dataset, which may not fully capture 

the diversity of real-world audio deepfakes. Second, while 

CoNSIST has shown improved stability, its generalization 

on different languages has not been tested. Lastly, hyper-

parameter settings were not exhaustively explored, poten-

tially leaving room for further optimization. Therefore, we 

expect further hyperparameter optimization, dataset ex-

pansion and augmentation techniques, and exploration of 

other potential enhancements. These efforts aim to fur-

ther improve the generalization capabilities of CoNSIST, 

ultimately leading to even more accurate audio deepfake 

detection. Further research on hyperparameter tuning, 

dataset collection and augmentation, and exploration of 

other potential enhancements have the potential to en-

hance the generalization performance of CoNSIST, result-

ing in improved accuracy for audio deepfake detection.
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