Acknowledgement
본 연구는 과학기술정보통신부의 한국연구재단(NRF-2020R1A2C2012113)과 과학기술정보통신부 한국건설기술연구원 '수소도시 기반시설의 안전 및 수용성 확보 기술 개발(No.20240176-001)' 사업의 지원으로 수행되었으며 이에 감사드립니다.
References
- Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002), "SMOTE: Synthetic Minority Over-sampling Technique", Journal of Artificial Intelligence Research, Vol.16, pp.321-357. https://doi.org/10.1613/jair.953
- Choi, H. J., Kim, S. W., and Kim, Y. S. (2022), "A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure", Journal of Korean Geosynthetics Society, pp.21-27.
- Cordon, I., Garcia, S., Fernandez, A., and Herrera, F. (2018), "Imbalance: Oversampling algorithms for Imbalanced Classification in R, Knowledge-Based Systems", Vol.161, pp.329-341. https://doi.org/10.1016/j.knosys.2018.07.035
- Go, G. H., Jeon, J. S., Kim, Y. S., Kim, H. W., and Choi, H. J. (2022), "Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility", Journal of the Korean Geotechnical Society, Vol.38, No.11, pp.107-118. https://doi.org/10.7843/KGS.2022.38.11.107
- Han, H., Wang, W. Y., and Mao, B. H. (2005, August), " Borderline-SMOTE: A New Over-sampling Method in Imbalanced Data Sets Learning", In International Conference on Intelligent Computing (pp.878-887), Berlin, Heidelberg: Springer Berlin Heidelberg.
- He, H., Bai, Y., Garcia, E. A., and Li, S. (2008, June), "ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning", In 2008 IEEE International Joint Conference on Neural Networks (IEEE world congress on computational intelligence) (pp.1322-1328), Ieee.
- Kim, S. Y., Lee, D., Yu, J. D., and Yoon, H. K. (2024), "A Study on the Characteristics of Applying Oversampling Algorithms to Fosberg Fire-Weather Index (FFWI) data", Smart Structures and Systems, Vol.34, No.1, p.9. https://doi.org/10.12989/SSS.2024.34.1.009
- Lee, W. S., Kim, Y., Shinn, Y., Wang, J., Moon, B., Park, H., ... and Kwon, O. (2021), "Role of Blue Hydrogen for Developing National Hydrogen Supply Infrastructure", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol.58, No.5, pp.503-520. https://doi.org/10.32390/ksmer.2021.58.5.503
- Ning, Z. X., Su, M. X., Xue, Y. G., Qiu, D. H., Li, Z. Q., and Fu, K. (2021), "Reevaluation of the Design and Excavation of Underground Oil Storage Cavern Groups Using Numerical and Monitoring Approaches", Geomech Eng, Vol.27, No.3, pp.291-307.
- Panfilov, M. (2016), Underground and Pipeline Hydrogen Storage, In Compendium of Hydrogen Energy (pp.91-115), Woodhead Publishing.
- Rekha, G. and Reddy, V. K. (2018), "A Novel Approach for Handling Outliers in Imbalance Data", International Journal of Engineering & Technology, Vol.7, No.3.1, pp.1-5. https://doi.org/10.14419/ijet.v7i3.1.16783
- Shin, J. W. (2023), "Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities", Korean Society of Disaster & Security, Vol.16, No.1, pp.61-70.
- Taylor, J. B., Alderson, J. E. A., Kalyanam, K. M., Lyle, A. B., and Phillips, L. A. (1986), "Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen", International Journal of Hydrogen Energy, Vol.11, No.1, pp.5-22. https://doi.org/10.1016/0360-3199(86)90104-7
- Zivar, D., Kumar, S., and Foroozesh, J. (2021), "Underground Hydrogen Storage: A Comprehensive Review", International Journal of Hydrogen Energy, Vol.46, No.45, pp.23436-23462. https://doi.org/10.1016/j.ijhydene.2020.08.138