DOI QR코드

DOI QR Code

연안해양 수치모델에 활용되는 LDAPS 강우예측 자료의 시공간 오차와 한계점 연구

Spatiotemporal Errors and Limitations of LDAPS-based Precipitation Forecast Data Used in Coastal Numerical Models

  • 박성은 (국립수산과학원 해양환경연구과) ;
  • 조준모 (국립수산과학원 해양환경연구과) ;
  • 권기영 (국립수산과학원 해양환경연구과) ;
  • 김경회 (국립부경대학교 해양공학과)
  • Sung Eun Park (Marine Environment Resaerch Division, National Institude of Fisheries Science) ;
  • Junmo Jo (Marine Environment Resaerch Division, National Institude of Fisheries Science) ;
  • Kee Young Kwon (Marine Environment Resaerch Division, National Institude of Fisheries Science) ;
  • Kyunghoi Kim (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2024.08.14
  • 심사 : 2024.08.29
  • 발행 : 2024.08.31

초록

본 연구는 연안해양 수치모델에 활용되는 LDAPS 강우예보 자료의 시공간적 오차와 한계점을 분석하고 자료의 신뢰성을 검증하였다. LDAPS 강우자료의 검증은 진해만 주변 우량계 3개소를 기준으로 2020년의 강우를 비교하였으며 우량계와 LDAPS의 비교 결과, LDAPS 강우자료는 장기적인 강우의 경향은 대체로 잘 재현하였으나 단기적으로는 큰 차이를 보였다. 정량적인 강우량 오차는 연간 197.5mm였으며, 특히 하계는 285.4mm로 나타나 계절적으로 강우변동이 큰 시기일수록 누적 강우량의 차이가 증가하였다. 강우 발생 시점의 경우 약 8시간의 시간 지연을 나타내어 LDPAS 강우자료의 시간적 오차가 연안해양환경 예측 시 정확도를 크게 감소시킬 수 있는 것으로 나타났다. 연안의 강우를 정확히 반영하지 못하는 LDAPS 강우자료를 무분별하게 사용할 경우 연안역에서 오염물질 확산 또는 극한 강우로 인한 연안환경 변화 예측에 심각한 문제를 발생시킬 수 있으며 LDAPS 강우자료의 적절한 활용을 위해서는 검증과 추가적인 개선을 통한 정확도 향상이 필요하다.

This study analyzed the spatiotemporal errors and limitations of LDAPS-based rainfall forecast data used in coastal ocean numerical models and verified their reliability by comparing them with the rainfall data for 2020 from three rain gauges located around Jinhae Bay, South Korea. The results indicated that although LDAPS-based rainfall data generally reproduced long-term trends, they exhibited significant discrepancies in short-term variations. The quantitative error in annual rainfall was 197.5 mm, which increased to 285.4 mm for summer, indicating that the difference in the cumulative rainfall prediction increases for seasons with high rainfall variability. Furthermore, the rainfall-time predictions exhibited a temporal delay of approximately 8 h, suggesting that temporal errors in the LDAPS-based rainfall data could significantly reduce the accuracy of coastal environment predictions. The indiscriminate use of these data, which fail to accurately reflect coastal rainfall, could lead to serious issues in predicting coastal environmental changes caused by pollutants or extreme rainfall events. Therefore, to appropriately use LDAPS-based rainfall data, it is necessary to improve their accuracy through comprehensive verifications and further refinements.

키워드

과제정보

본 논문은 2024년도 국립수산과학원 수산과학연구사업 (R2024044)의 지원으로 수행되었습니다.

참고문헌

  1. Do, K. D. and J. A. Kim(2018), A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 30, No. 5, pp. 223-233.
  2. Kang, S. W.(1991), Circulation and Pollutant Dispersion in Masan Jinhae Bay of Korea, Marine Pollution Bulletin, Vol. 23, pp. 37-40.
  3. Kim, E. J., B. K. Park, D. S. Shin, Y. S. Kim, and D. H. Rhew(2014), The study on methods for setting of water quality goal and estimation of allocation loads on TMDL system using a dynamic water quality model. Journal of Korean Society of Environmental Engineers, Vol. 36, No. 9, pp. 629-640.
  4. Kim, M. S., S. B. Woo, H. Eom, S. H. You, and H. M. Lee(2022), Towards observation- and atmospheric model-based early warning systems for meteotsunami mitigation: A case study of Korea, Weather and Climate Extremes, Vol. 37, 100463.
  5. Kong, H. H., I. C. Lee, and K. Ok(2005), Temporal and Spatial Variation of Inflowing Pollutant Loads in Jinhae Bay, The Korean Society for Marine Environment and Energy, pp. 15-19.
  6. Lee, G. J., J. U. Seong, J. H. Park, G. S. Joe, and J. C. Park (2010), Runoff Characteristics of Nonpoint Pollutants Source in Urban Area, Journal of the Environment Sciences, Vol. 19, No. 7, pp. 817-827.
  7. Lee, M., J. Kim, M. Kim, and B. Kim(2020), Transitions of Jinhae Bay Research and Future Issue, The Korean Society for Marine Environment and Energy, Vol. 23, No. 2, pp. 57-69.
  8. Lim, K. H. and H. C. Shin(2005), Temporal and Spatial Distribution of Benthic Polychaetous Community in the northern Jinhae Bay, Korean Journal of Environmental Biology, Vol. 23, No. 3, pp. 238-249.
  9. Mittermaier, P. M.(2008), The Potential Impact of Using Persistence as a Reference Forecast on Perceived Forecast Skill, Weather and Forecasting, Vol. 23, No. 5, pp. 1022-1031.
  10. Park, J. H. and Y. T. Hur(2009), Flood Runoff Simulation Using Physical Based Distributed Model for Imjin-River Basin, Journal of Korea Water Resource Association, Vol. 42, No. 1, pp. 51-60.
  11. Seol, D. I.(2011), An Analysis of Characteristics on Meteorological Disastersin the Southern Coast of Korea, Journal of Navigation and Port Research, Vol. 35, No. 1, pp. 17-21.
  12. Son, B. and K. Do(2021), Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea. Journal of Ocean Engineering and Technology, Vol. 35, No. 4, pp. 273-286.
  13. Song, H. J., B. Lim, and S. Joo(2019), valuation of precipitation forecasts with heavy rain types in the high-resolution unified model over South Korea. Weather and Forecasting, Vol. 34, No. 5, pp. 1277-1293.
  14. Xue, P., P. Malanotte-Rizzoli, J. Wei, and E. A. Eltahir(2020), Coupled ocean atmosphere modeling over the Maritime Continent: A review. Journal of Geophysical Research: Oceans, Vol. 125, No. 6.
  15. Yu, M., Y. Lee, and J. Yi(2016), Flood inflow forecasting on HantanRiver reservoir by using forecasted precipitation. Journal of Korea Water Resources Association, Vol. 49, No. 4, pp. 327-333.
  16. Yu, W. S., S. S. Yun, U. H. Hwang, H. S. Chae, and G. S. Jeong(2019), Evaluation of the Applicability of Numerical Weather Prediction Data for precipitation and Flood Forecasting. Water for future, Vol. 52, No. 2, pp. 24-35.