DOI QR코드

DOI QR Code

Shear capacity of additive-manufactured stainless-steel single-lap bolted connections

  • Zhengyi Kong (Department of Civil Engineering, Anhui University of Technology) ;
  • Ningning Hu (Department of Civil Engineering, Anhui University of Technology) ;
  • Ya Jin (Department of Civil Engineering, Anhui University of Technology) ;
  • Kun Xing (Department of Civil Engineering, Anhui University of Technology) ;
  • Qinglin Tao (Department of Civil Engineering, Anhui University of Technology) ;
  • George Vasdravellis (Institute for Sustainable Built Environment, Heriot-Watt University) ;
  • Duc Kien Thai (Dept. of Civil and Environmental Engineering, Sejong University) ;
  • Quang-Viet Vu (Laboratory for Computational Civil Engineering, Institute for Computational Science and Artificial Intelligence, Van Lang University)
  • 투고 : 2024.04.03
  • 심사 : 2024.10.15
  • 발행 : 2024.10.25

초록

Advancements in additive manufacturing technology, notably for its efficiency, accuracy, automation, and streamlined procedures, are increasingly relevant in civil engineering. This study evaluates the mechanical properties of 316L stainless steel bolted connections fabricated using Powder Bed Fusion (PBF) additive manufacturing. Eleven single-lap bolted connection specimens were tested under monotonic loading to assess the influence of various factors, including plate thickness, manufacturing direction, bolt end and edge distances, and bolt quantity, on the connections' anti-sliding and shear capacities. Material tests conducted prior to the connection tests revealed that PBF-manufactured stainless steel plates possess higher yield and ultimate strength, as well as greater elongation capacity, compared to traditional stainless steel plates. The connection tests indicated that the anti-sliding coefficient values range from 0.348 to 0.698, aligning with current standards for stainless steel bolted connections. Three distinct failure modes were identified: net section failure in the stainless-steel plate, bolt shear failure, and plate shear failure. It was determined that existing standards for anti-sliding capacity may not be entirely applicable to PBF-manufactured connections. Therefore, a modified model for the anti-sliding capacity of these connections is proposed. Additionally, a more accurate formula for calculating their shear capacity, which addresses the oversight of friction forces in current standards, is introduced.

키워드

과제정보

This work was supported by the Horizon 2020 - Marie Sklodowska - Curie Individual Fellowship of European Commission (No. SS-DSC 01107320), EPSRC Fellowship award (No. EP/Y020278/1), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province, China (No. gxyq2022015), Natural Science Foundation of Anhui Province, China (No. 1908085ME171), Anhui Provincial Research Program Project- Key Project, China (No. 2022AH050304), and The Open Fund of Key Laboratory of Anhui Higher Education Institutes, China (No. CS2022-02).

참고문헌

  1. AISIS100-2016 (2016), North American specification for the design of cold-formed steel structural members, American Iron and Steel Institute, AISI Standard.
  2. Aoki, H. (2000), "Establishment of design standards and current practice for stainless steel structural design in Japan", J. Construct. Steel Res., 54(1), 191-210. https://doi.org/10.1016/S0143-974X(99)00097-8.
  3. AS/NZS 4600:2018 (2018), Cold-formed stainless steel structures. Australian/New Zealand Standard; Sydney.
  4. Burgan, B.A., Baddoo, N.R. and Gilsenan, K.A. (2000), "Structural design of stainless steel members-comparison between Eurocode 3, Part 1.4 and test results", J. Construct. Steel Res., 54(1), 51-73. https://doi.org/10.1016/S0143-974X(99)00055-3.
  5. Cai, Y. and Young, B. (2020), "Effects of end distance on thin sheet steel single shear bolted connections at elevated temperatures", Thin-Wall. Struct., 148, 106577. https://doi.org/10.1016/j.tws.2019.106577.
  6. Cai, Y. and Young, B. (2019), "Effects of end distance on thin sheet steel bolted connections", Eng. Struct., 196, 109331. https://doi.org/10.1016/j.engstruct.2019.109331.
  7. CECS410 : 2015 (2015), Technical specification for stainless steel structures, China Association for Engineering Construction Standardization, Beijing China Planning Publishing House; Beijing, China.
  8. Didier, P., Piotrowski, B., Fischer, M. and Laheurte, P. (2017), "Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy", Mater. Sci. Eng.: C, 74, 399-409. https://doi.org/10.1016/j.msec.2016.12.031.
  9. Dobric, J., Cai, Y., Young, B. and Rossi, B. (2021), "Behaviour of duplex stainless steel bolted connections", Thin-Wall. Struct., 169, 108380. https://doi.org/10.1016/j.tws.2021.108380.
  10. dos Santos, J.D.J., Liang, Y., Zhao, O., de Andrade, S.A., de Lima, L.R., Gardner, L. and Vellasco, P.C.D.S (2021), "Testing and design of stainless steel staggered bolted connections", Eng. Struct., 231, 111707. https://doi.org/10.1016/j.engstruct.2020.111707.
  11. Elangeswaran, C., Cutolo, A., Muralidharan, G.K., de Formanoir, C., Berto, F., Vanmeensel, K. and Van Hooreweder, B. (2019), "Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion", Int. J. Fatigue, 123, 31-39. https://doi.org/10.1016/j.ijfatigue.2019.01.013.
  12. EN1993-1-4:2006 (2006), Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels, European Committee for Standar Dization; Brussels.
  13. Evans, S.I., Wang, J., Qin, J., He, Y., Shepherd, P. and Ding, J. (2022), "A review of WAAM for steel construction-Manufacturing, material and geometric properties, design, and future directions", Struct., 44, 1506-1522. https://doi.org/10.1016/j.istruc.2022.08.084.
  14. Gardner, L. (2023), "Metal additive manufacturing in structural engineering-Review, advances, opportunities and outlook", Struct., 47, 2178-2193. https://doi.org/10.1016/j.istruc.2022.12.039.
  15. Gardner, L. and Nethercot, D.A. (2004), "Experiments on stainless steel hollow sections-Part 2: Member behaviour of columns and beams", J. Constr. Steel Res., 60(9), 1319-1332. https://doi.org/10.1016/j.jcsr.2003.11.007.
  16. Gardner, L. and Nethercot, D.A. (2004), "Experiments on stainless steel hollow sections-Part 1: Material and cross-sectional behaviour", J. Constr. Steel Res., 60(9), 1291-1318. https://doi.org/10.1016/j.jcsr.2003.11.006.
  17. GB/T 3280-2015 (2015), Cold rolled stainless steel plate, sheet and strip, National Standard of the People's Republic of China, China Standards Publishing House; Beijing, China.
  18. GB/T228.1-2021 (2021), Metallic materials-Tensile testing-Part 1: Method of test at room temperature, China Standards Publishing House; Beijing, China.
  19. Govindaraj, R.B., Junghans, E., Andersen, I., ki Lim, Y. and Lindstrom, P. (2021), "Additive manufactured marine component-Ni Al bronze propeller", Procedia Struct. Integrity, 34, 20-25. https://doi.org/10.1016/j.prostr.2021.12.039.
  20. Guan, K., Wang, Z., Gao, M., Li, X. and Zeng, X. (2013), "Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel", Mater. Des., 50, 581-586. https://doi.org/10.1016/j.matdes.2013.03.056.
  21. Guo, X., Kyvelou, P., Ye, J., Teh, L. H. and Gardner, L. (2022), "Experimental investigation of wire arc additively manufactured steel single-lap shear bolted connections", Thin-Wall. Struct., 181, 110029. https://doi.org/10.1016/j.tws.2022.110029.
  22. Guo, X., Kyvelou, P., Ye, J., Teh, L.H., and Gardner, L. (2023), "Experimental study of DED-arc additively manufactured steel double-lap shear bolted connections", Eng. Struct., 281, 115736. https://doi.org/10.1016/j.engstruct.2023.115736.
  23. Hong, S.Z. (2021), "Research on carrying capacity of corroded high-strength bolt shear connections", Master Degree. Dissertation, Anhui University of Technology, Ma'anshan.
  24. Hu, Y. and Li, J. (2017), "Selective laser alloying of elemental titanium and boron powder: Thermal models and experiment verification", J. Mater. Process. Tech., 249, 426-432. https://doi.org/10.1016/j.jmatprotec.2017.06.029.
  25. Huang, G., Wei, K., Deng, J., Liu, M. and Zeng, X. (2022), "High-power laser powder bed fusion of 316L stainless steel: Defects, microstructure, and mechanical properties", J. Manuf. Process., 83, 235-245. https://doi.org/10.1016/j.jmapro.2022.08.066.
  26. Jiang, K., Li, S., Zhong, Y. and Zhao, O. (2024), "Bearing-curling interaction of austenitic stainless steel thin sheet bolted connections", Thin-Wall. Struct., 200, 111912. https://doi.org/10.1016/j.tws.2024.111912.
  27. Jiang, K. and Zhao, O. (2022), "Experimental and numerical studies of stainless steel angle-to-plate connections", Thin-Wall. Struct., 173, 109026-. https://doi.org/10.1016/j.tws.2022.109026.
  28. Jiang, K. and Zhao, O. (2023), "Ferritic stainless steel thin sheet bolted connections failing by bearing-Curling interaction: Testing, modelling and design", Eng. Struct., 283, 115919. https://doi.org/10.1016/j.engstruct.2023.115919.
  29. Bickford, J.H. (2007), Introduction to the Design and Behaviour of Bolted Joints, Taylor & Francis, Boca Raton, American.
  30. Kamath, C., El-Dasher, B., Gallegos, G.F., King, W.E. and Sisto, A. (2014), "Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W", Int. J. Adv. Manuf. Tech., 74, 65-78. H ttps://DOI 10.1007/s00170-014-5954-9.
  31. Kichloo, A.F., Raina, A., Haq, M.I.U. and Wani, M.S. (2022), "Impact of carbon fiber reinforcement on mechanical and tribological behavior of 3D-printed polyethylene terephthalate glycol polymer composites-An experimental investigation", J. Mater. Eng. Perform., 1-18. https://doi.org/10.1007/s11665-021-06262-6.
  32. Kim, T.S. and Kuwamura, H. (2007), "Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear", Thin-Wall. Struct., 45(4), 407-421. https://doi.org/10.1016/j.tws.2007.03.006.
  33. Kim, T.S., Kuwamura, H. and Cho, T.J. (2008), "A parametric study on ultimate strength of single shear bolted connections with curling", Thin-Wall. Struct., 46, 38-53. https://doi.org/10.1016/j.tws.2007.08.009.
  34. Kim, T.S. and Han, B.S. (2007), "Numerical simulation and effect of curling on bolted connections in cold-formed stainless steel", Iron Steel Inst. Japan Int., 47, 920-929. https://doi.org/10.2355/isijinternational.47.920.
  35. Kong, Z., Wang, X., Hu, N., Jin, Y., Tao, Q., Xia, W., and Vasdravellis, G. (2024), "Mechanical properties of SLM 316L stainless steel plate before and after exposure to elevated temperature", Constr. Build. Mater., 444, 137786. https://doi.org/10.1016/j.conbuildmat.2024.137786.
  36. Kong, Z.Y., Yang, B., Shi, C.Q., Huang, X.J., Vasdravellis, G., Vu, Q.V. and Kim, S.E. (2024), "Mechanical behavior of 316L austenitic stainless steel bolts after fire", Steel Compos. Struct., 50(3), 281-298. https://doi.org/10.12989/scs.2024.50.3.281.
  37. Kong, Z., Yang, F., Jin, Y., Hong, S., Wang, X., Vu, Q.V., Truong, V.H., Yu, B. and Kim, S.E., (2021), "Experimental study on bearing capacity of corroded high-strength bolt connections under shear force", Construct. Build. Mater., 309, 125117. https://doi.org/10.1016/j.conbuildmat.2021.125117.
  38. Kong, Z., Li R., Wang X., Hu N., Jin Y., Tao Q. and Vasdravellis G. (2025), "Shear capacity of additively manufactured stainless steel bolted connections after fire", Eng. Struct., 322, 19102. https://doi.org/10.1016/j.engstruct.2024.119102.
  39. Lai, B., Zheng, X., Fan, S. and Chang, Z. (2024), "Behavior and design of concrete filled stainless steel tubular columns under concentric and eccentric compressive loading", J. Constr. Steel Res., 213, 108319. https://doi.org/10.1016/j.jcsr.2023.108319.
  40. Leuders, S., Lieneke, T., Lammers, S., Troster, T. and Niendorf, T. (2014), "On the fatigue properties of metals manufactured by selective laser melting-The role of ductility", J. Mater. Res., 29(17), 1911-1919. https://doi.org/10.1557/jmr.2014.157.
  41. Liu, B. (2023), "Development and research on bolt pre-tightening force monitoring sensor for steel structure bridges", Eng. Tech. Res., 8(08), 115-117. https://doi.org/10.19537/j.cnki.2096-2789.2023.08.035.
  42. Liu, Z., Zheng, M., Yan, X., Zhao, Y., Cheng, Q. and Yang, C. (2020), "Changing behavior of friction coefficient for high strength bolts during repeated tightening", Tribol. Int., 151, 106486. https://doi.org/10.1016/j.triboint.2020.106486.
  43. Meier, H. and Haberland, C. (2008), "Experimental studies on selective laser melting of metallic parts", Materialwissenschaft Werkstofftechnik, 39(9), 665-670. https://DOI: 10.1002/mawe.200800327.
  44. Meier, H. and Haberland, C. (2008), "Experimental studies on selective laser melting of metallic parts", Materialwissenschaft und Werkstofftechnik, 39(9), 665-670. https://doi.org/10.1002/mawe.200800327.
  45. Mertens, A., Reginster, S., Contrepois, Q., Dormal, T., Lemaire, O. and Lecomte-Beckers, J. (2014), "Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting", Mater. Sci., 783, 898-903. https://doi.org/10.4028/www.scientific.net/MSF.783-786.898.
  46. Mirambell, E. and Real, E. (2000), "On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation", J. Constr. Steel Res., 54(1), 109-133. https://doi.org/10.1016/S0143-974X(99)00051-6.
  47. Morgan, R., Sutcliffe, C.J. and O'neill, W. (2004), "Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives", J. Mater. Sci., 39, 1195-1205. https://doi.org/10.1023/B:JMSC.0000013875.62536.
  48. Mower, T.M. and Long, M.J. (2016), "Mechanical behavior of additive manufactured, powder-bed laser-fused materials", Mater. Sci. Eng., 651, 198-213. https://doi.org/10.1016/j.msea.2015.10.068.
  49. Murugan, P.D., Vijayananth, S., Natarajan, M.P., Jayabalakrishnan, D., Arul, K., Jayaseelan, V. and Elanchezhian, J. (2022), "A current state of metal additive manufacturing methods: A review", Mater. Today: Proceedings, 59, 1277-1283. https://doi.org/10.1016/j.matpr.2021.11.503.
  50. Pu L.G., Chen G.L. and Wu L.Y. (2019), Mechanical Design, Higher Education Press, China.
  51. Qiu, C., Kindi, M.A., Aladawi, A.S. and Hatmi, I.A. (2018), "A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel", Sci. Report., 8(1), 7785. https://doi.org/10.1038/s41598-018-26136-7.
  52. Real, E. and Mirambell, E. (2005), "Flexural behaviour of stainless steel beams", Eng. Struct., 27(10), 1465-1475. https://doi.org/10.1016/j.engstruct.2005.04.008.
  53. Riemer, A., Leuders, S., Thone, M., Richard, H.A., Troster, T. and Niendorf, T. (2014), "On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting", Eng. Fract. Mech., 120, 15-25. https://doi.org/10.1016/j.engfracmech.2014.03.008.
  54. Saadlaoui, Y., Milan, J.L., Rossi, J.M. and Chabrand, P. (2017), "Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes", J. Manuf. Syst., 43, 178-186. https://doi.org/10.1016/j.jmsy.2017.03.006.
  55. Salih, E.L., Gardner, L. and Nethercot, D.A. (2010), "Numerical investigation of net section failure in stainless steel bolted connections", J. Constr. Steel Res., 66(12), 1455-1466. https://doi.org/10.1016/j.jcsr.2010.05.012.
  56. Salih, E.L., Gardner, L. and Nethercot, D.A. (2011), "Bearing failure in stainless steel bolted connections", Eng. Struct., 33(2), 549-562. https://doi.org/10.1016/j.engstruct.2010.11.013.
  57. SEI/ASCE-8-02 (2002), Specification for the design of cold-formed stainless steel structural members; Virginia.
  58. Song, Y., Lin, X.M., Yam, M.C., Ke, K. and Wang, J. (2021), "Behaviour and design of duplex stainless steel bolted connections failing in block shear", Eng. Struct., 302, 117442. https://doi.org/10.1016/j.engstruct.2024.117442.
  59. Song, Y., Lin, X.M., Yam, M.C.H. and Ke, K. (2002), "Block shear failure of austenitic stainless steel bolted connections", Thin-Wall. Struct., 193, 111251. https://doi.org/10.1016/j.tws.2023.111251.
  60. Song, Y., Wang, J., Uy, B. and Li, D. (2020), "Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear", J. Constr. Steel Res., 166, 105916. https://doi.org/10.1016/j.jcsr.2019.105916.
  61. Spierings, A.B., Herres, N. and Levy, G. (2011), "Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts", Rapid Prototyping J., 17(3), 195-202. https://doi.org/10.1108/13552541111124770.
  62. Spierings, A.B., Starr, T.L. and Wegener, K. (2013), "Fatigue performance of additive manufactured metallic parts", Rapid Prototyping J., 19(2), 88-94. https://doi.org/10.1108/13552541311302932.
  63. Stranghoner, N., Afzali, N., de Vries, P., Schedin, E. and Pilhagen, J. (2019), "Slip factors for slip-resistant connections made of stainless steel", J. Constr. Steel Res., 152, 235-245. https://doi.org/10.1016/j.jcsr.2018.07.005.
  64. Sun, G.Q., Zhu, D.Y., Chen, S.J., Deng, Z.F., Kang, W. and Shang, D.G. (2023), "Fatigue crack initiation and propagation of wire arc additive manufactured Al-Mg alloy", Eng. Fail. Anal., 148, 107164. https://doi.org/10.1016/j.engfailanal.2023.107164.
  65. The Design and Construction Standards for Stainless Steel Structures (1995), Stainless Steel Building Association of Japan, Japan.
  66. Theofanous, M., Chan, T.M. and Gardner, L. (2009), "Structural response of stainless steel oval hollow section compression members", Eng. Struct., 31(4), 922-934. https://doi.org/10.1016/j.engstruct.2008.12.002.
  67. Wang, Y.B., Lyu, Y.F., Li, G.Q. and Liew, J.R. (2019), "Bearing-strength of high strength steel plates in two-bolt connections", J. Constr. Steel Res., 155, 205-218. https://doi.org/10.1016/j.jcsr.2018.12.011.
  68. Yin, S., Yan, X., Jenkins, R., Chen, C., Kazasidis, M., Liu, M. and Lupoi, R. (2019). "Hybrid additive manufacture of 316L stainless steel with cold spray and selective laser melting: Microstructure and mechanical properties", J.Mater. Process.Tech., 273, 116248. https://doi.org/10.1016/j.jmatprotec.2019.05.029.
  69. Yuan, H., Hu, S., Du, X., Cheng X.Y. (2019), "Experimental study on bearing capacity of bolted connection of stainless steel T-stub", Eng. Mech., 36, 215-223. https://doi.org/10.6052/j.issn.1000-4750.2017.12.0986.
  70. Zhao, J., Lai, B., Fan, S., Liu, M. and Li C. (2023), "Numerical simulation of local-distortional buckling behavior of lipped C-section stainless steel columns", J. Constr. Steel Res., 211, 108148. https://doi.org/10.1016/j.jcsr.2023.108148.
  71. Zheng, B., Wang, J., Gu, Y., Shu, G., Xie, J. and Jiang, Q. (2021), "Experimental study on stainless steel high-strength bolted slip-resistant connections", Eng. Struct., 231, 111778. https://doi.org/10.1016/j.engstruct.2020.111778.
  72. Zhu, Y., Peng, T., Jia, G., Zhang, H., Xu, S. and Yang, H. (2019), "Electrical energy consumption and mechanical properties of selective-laser-melting-produced 316L stainless steel samples using various processing parameters", J. Clean. Prod., 208, 77-85. https://doi.org/10.1016/j.jclepro.2018.10.109.
  73. Zuo, W., Chen, M.T., Zhao, O., Su, A., Liu, S.W., Xu, F. and Cheng, B. (2024), "Behavior of wire arc additively manufactured 316L austenitic stainless steel single shear bolted connections", Thin-Wall. Struct., 112075. https://doi.org/10.1016/j.tws.2024.112075.
  74. Zuo, W., Chen, M.T., Zhao, O., Su, A., Liu, S.W., Xu, F. and Cheng, B. (2024), "Behavior of wire arc additively manufactured 316L austenitic stainless steel single shear bolted connections", Thin-Wall. Struct., 112075. https://doi.org/10.1016/j.tws.2024.112075.