DOI QR코드

DOI QR Code

Numerical and analytical study of cyclic behavior of TADAS and the impact of axial force on its performance

  • Kambiz Cheraghi (Department of Civil Engineering, Faculty of Engineering, Razi University) ;
  • Mehrzad TahamouliRoudsari (Department of Civil Engineering, Kermanshah Branch, Islamic Azad University)
  • 투고 : 2024.04.04
  • 심사 : 2024.10.08
  • 발행 : 2024.10.25

초록

This study focused on the cyclic behavior of Triangular-plate Added Damping and Stiffness (TADAS) and the impact of axial force on its performance. First, the numerical model was verified, and the impact of damper dimensions on elastic and effective stiffness, ultimate strength, energy dissipation, and equivalent viscous damping ratio (EVDR) was studied. The numerical results were then used to propose approximate equations to estimate these findings. In the second section, the buckling load of TADAS was calculated analytically, and an approximate equation was presented to facilitate estimation. The effects of axial force on elastic stiffness, ductility, and ultimate strength were then investigated. This study found that decreasing the height, increasing the width, and increasing the middle width of TADAS improved its energy absorption, effective stiffness, and ultimate strength. The EVDR results improved with decreasing height, increasing width, and middle width. Approximate equations provided results that were close to numerical results, indicating that they are reliable for calculating seismic parameters. The damper's ultimate strength was most affected by the axial force. In the most affected model, an increase in axial force of 0.025 Pcr (Buckling load of the damper) reduced ultimate strength, ductility, and elastic stiffness by 26%, 22%, and 16%, respectively.

키워드

참고문헌

  1. Akbari Hamed, A., Mortazavi, S.F. and Saeidzadeh, M. (2023), "Evaluation of the seismic performance of structures equipped with novel multi-level TADAS dampers", Asian J. Civil Eng., 24(4), 969-988.https://doi.org/10.1007/s42107-022-00546-5.
  2. Buratti, N., Pollini, A.V. and Mazzotti, C. (2023), "Experimental characterization of the mechanical behaviour of U-shaped dissipative devices", Procedia Struct. Integrity, 44, 1196-1203. https://doi.org/10.1016/j.prostr.2023.01.154.
  3. Bustos, F., Hinojosa, J. and Tuninetti, V. (2023), "Computational comparison of performance of different steel plate shear yielding dampers", Buildings, 13(3), 793. https://doi.org/10.3390/buildings13030793.
  4. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
  5. Cheraghi, K., Tahamouliroudsari, M. and Kiasat, S. (2023a), "Numerical and analytical investigation of U-shape dampers and its effect on steel frames", Structures, 55, 498-509. https://doi.org/10.1016/j.istruc.2023.06.037.
  6. Cheraghi, K., Tavana, M.H. and Aghayari, R. (2023b), "Investigating the effect of low-yield yielding dampers on the seismic behavior of steel frames", Periodica Polytechnica Civil Eng. https://doi.org/10.3311/PPci.21804
  7. Chopra, A.K. (2007), Dynamics of Structures, Pearson Education India.
  8. Dareini, H.S. and Hashemi, B.H. (2011), "Use of dual systems in tadas dampers to improve seismic behavior of buildings in different levels", Procedia Engineering, 14, 2788-2795. https://doi.org/10.1016/j.proeng.2011.07.351.
  9. Deng, K., Pan, P., Su, Y. and Xue, Y. (2015), "Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading", Eng. Struct., 93, 27-35. https://doi.org/10.1016/j.engstruct.2015.03.006.
  10. Ebadi Jamkhaneh, M., Ebrahimi, A.H. and Shokri Amiri, M. (2019), "Experimental and numerical investigation of steel moment resisting frame with U-shaped metallic yielding damper". Int. J. Steel Struct., 19(3), 806-818. https://doi.org/10.1007/s13296-018-0166-z.
  11. Fema, A. (2005), "440, Improvement of nonlinear static seismic analysis procedures", FEMA-440, Redwood City, 7(9), 11
  12. Ghaedi, K., Ibrahim, Z., Javanmardi, A. and Rupakhety, R. (2021), "Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads", J. Earthq. Eng., 25(2), 300-318. https://doi.org/10.1080/13632469.2018.1515796.
  13. Ghamari, A., Kim, Y.-J. and Bae, J. (2022), "An Innovative shear link as damper: An experimental and numerical study", Steel Compos. Struct., 42(4), 539. https://doi.org/10.12989/scs.2022.42.4.539.
  14. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020a), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  15. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Construct. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  16. Gullu, A. and Korpeoglu, S.G. (2022), "Simultaneous multi-objective optimal sizing of energy dissipative steel cushions for transversal loading", Int. J. Struct. Stab. Dyn., 22(01), 2250012. https://doi.org/10.1142/S0219455422500122.
  17. Hibbeler, R.C. and Tan, K.-H. (2006), Structural Analysis, Pearson Prentice Hall Upper Saddle River.
  18. Javidan, M.M., Chun, S. and Kim, J. (2021a), "Experimental study on steel hysteretic column dampers for seismic retrofit of structures", Steel Compos. Struct., 40(4), 495-509. https://doi.org/10.12989/scs.2021.40.4.495.
  19. Javidan, M.M., Naeem, A. and Kim, J. (2023), "Seismic retrofit of structures using added steel column friction dampers", Steel Compos. Struct., 49(3), 257-270. https://doi.org/10.12989/scs.2023.49.3.257.
  20. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021b), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  21. Khoshkalam, M., Mortezagholi, M.H. and Zahrai, S.M. (2022), "Proposed modification for ADAS damper to eliminate axial force and improve seismic performance", J. Earthq. Eng., 26(10), 5130-5152. https://doi.org/10.1080/13632469.2020.1859419.
  22. Kim S.-W. and Kim, K.-H. (2020), "Evaluation of structural behavior of hysteretic steel dampers under cyclic loading", Appl. Sci., 10(22), 8264. https://doi.org/10.3390/app10228264.
  23. Lie, W., Wu, C., Luo, W., Wu, C., Li, C., Li, D. and Wu, C. (2022), "Cyclic behaviour of a novel torsional steel-tube damper", J. Construct. Steel Res., 188, 107010. https://doi.org/10.1016/j.jcsr.2021.107010.
  24. Mohammadi, R.K., Nasri, A. and Ghaffary, A. (2017), "TADAS dampers in very large deformations", Int. J. Steel Struct., 17(2), 515-524. https://doi.org/10.1007/s13296-017-6011-y.
  25. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  26. Sedaghatnezhad, H., Fallah, A., Yazdi, M.M. and Katal Mohseni, P. (2022), "Investigation of seismic coefficient factor for divergent bracing frame with TADAS damper utilizing the FEMA P695", J. Institution Engineers (India): Series A, 103(1), 263-270. https://doi.org/10.1007/s40030-021-00576-3.
  27. Shahri, S.F. and Mousavi, S.R. (2018), "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Compos. Struct., 26(3), 289-301. https://doi.org/10.12989/scs.2018.26.3.289.
  28. Tahamouliroudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers", Struct. Durability & Health Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927.
  29. Tahamouliroudsari, M., Cheraghi, K. and Habibi, M.R. (2019), "Investigation of retrofitting RC moment resisting frames with ADAS yielding dampers", Asian J. Civil Eng., 20(1), 125-133. https://doi.org/10.1007/s42107-018-0092-6.
  30. Xu, L.-Y., Nie, X. and Fan, J.-S. (2016), "Cyclic behaviour of low-yield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002.
  31. Yoo, C.H. and Lee, S. (2011), Stability of Structures: Principles and Applications, Elsevier.
  32. Yuksel, E., Karadogan, F., Ozkaynak, H., Khajehdehi, A., Gullu, A., Smyrou, E. and Bal, I.E. (2018), "Behaviour of steel cushions subjected to combined actions", Bull. Earthq. Eng., 16(2), 707-729.https://doi.org/10.1007/s10518-017-0217-4.
  33. Zhao, H., Shi, G. and Gao, Y. (2023), "Experimental study on cyclic behaviour of low yield point steel buckling-restrained braces", Eng. Struct., 277, 115464. https://doi.org/10.1016/j.engstruct.2022.115464.
  34. Zheng, J., Li, A. and Guo, T. (2015), "Analytical and experimental study on mild steel dampers with non-uniform vertical slits", Earthq. Eng. Eng. Vib., 14(1), 111-123. https://doi.org/10.1007/s11803-015-0010-9.
  35. Zhou, C. and Han, J. (2012), "Study on the seismic performance of X-added damping and stiffness energy dissipation device", 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24-28.