DOI QR코드

DOI QR Code

On the dynamic behavior of functionally graded cracked beams resting on winkler foundation under moving load

  • Alaa A. Abdelrahman (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed Ashry (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Amal E. Alshorbagy (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Waleed S. Abdalla (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University)
  • 투고 : 2021.02.26
  • 심사 : 2024.10.10
  • 발행 : 2024.10.25

초록

Although the excellent characteristics of functionally graded materials (FGMs) cracks could be found due to manufacturing defects or extreme working conditions. The existence of these cracks may threaten the material or structural strength, reliability, and lifetime. Due to high cost and restrictions offered by practical operational features these cracked components couldn't be replaced immediately. Such circumstances lead to the requirement of assessing the dynamic performance of cracked functionally graded structural components especially under moving objects. The present study aims to comprehensively investigate the dynamic behavior of functionally graded cracked Timoshenko beams (FGCTBs) resting on Winkler foundation and subjected to moving load through shear locking free finite elements methodology. The through thickness material distribution is simulated by the exponential gradation law. The geometric discontinuity due to cracks is represented using the massless rotational spring approach. The shear locking phenomena is avoided by using the different interpolation functions orders for both deflections and rotations. Based on Timoshenko beam element, a shear locking free finite elements methodology is developed. The unconditionally stable Newmark procedure is employed to solve the forced vibration problem. Accuracy of the developed procedure is verified by comparing the obtained results with the available results and an excellent agreement is found. Parametric studies are conducted to explore effects of the geometrical, material characteristics, crack geometrical characteristics, the elastic foundation parameter, and the moving load speed on the dynamic behavior for different boundary conditions. Obtained results revealed the significant effect these parameters on the dynamic performance of FGCTBs.

키워드

참고문헌

  1. Abdelrahman, A.A., Ashry, M., Alshorbagy, A.E. and Abdallah, W.S. (2021), "On the mechanical behavior of two directional symmetrical functionally graded beams under moving load", Int. J. Mech. Mater. Des., 17, 563-586. https://doi.org/10.1007/s10999-021-09547-9.
  2. Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2019), "Analysis of steady-state frictional rolling contact problems in Schapery-nonlinear viscoelasticity", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(6), 911-926. https://doi.org/10.1177/1350650118806675.
  3. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Math. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
  4. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2022), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 38(Suppl 1), 169-190. https://doi.org/10.1007/s00366-020-01141-5.
  5. Abdelrahman, A.A., Saleem, H.A., Abdelhaffez, G.S. and Eltaher, M.A. (2023), "On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity", Math., 11(5), 1162. https://doi.org/10.3390/math11051162.
  6. Agrawal, A.K. and Chakraborty, G. (2021), "Dynamics of a cracked cantilever beam subjected to a moving point force using discrete element method", J. Vib. Eng. Technol., 9, 803-815. https://doi.org/10.1007/s42417-020-00265-8.
  7. Akbas, S. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4, 4590-4597.
  8. Al Rjoub, Y.S. and Hamad, A.G. (2020), "Forced vibration of axially-loaded, multi-cracked Euler-Bernoulli and Timoshenko beams", Struct., 25, 370-385. https://doi.org/10.1016/j.istruc.2020.03.030.
  9. Almitani, K., Abdelrahman, A., Almitani, K. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35, 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  10. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  11. Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43, 79-90. https://doi.org/10.12989/scs.2022.43.1.079.
  12. Assie, A.E., Mohamed, S.A., Abdelrahman, A.A. and Eltaher, M.A. (2023), "Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces", Steel Compos. Struct., 48(2), 113. https://doi.org/10.12989/scs.2023.48.2.113.
  13. Attar, M., Karrech, A. and Regenauer-Lieb, K. (2015), "Dynamic response of cracked Timoshenko beams on elastic foundations under moving harmonic loads", J. Vib. Control, 23, 432-457. https://doi.org/10.1177/1077546315580470.
  14. Attia, M.A. and Abdelrahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  15. Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Europ. J. Mech. A/Solids, 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002.
  16. Banerjee, A., Panigrahi, B. and Pohit, G. (2016), "Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA", Nondestruct. Test. Eval., 31(2), 142-164.
  17. Barretta, R., Ali Faghidian, S., de Sciarra, F.M. and Pinnola, F.P. (2021), "Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli", Mech. Adv. Mater. Struct., 28(15), 1523-1536. https://doi.org/10.1080/15376494.2019.1683660.
  18. Barretta, R., Canadija, M. and Marotti de Sciarra, F. (2019), "Modified nonlocal strain gradient elasticity for nano-rods and application to carbon nanotubes", Appl. Sci., 9(3), 514. https://doi.org/10.3390/app9030514.
  19. Barretta, R., Canadija, M., Marotti de Sciarra, F. and Skoblar, A. (2022), "Free vibrations of bernoulli-euler nanobeams with point mass interacting with heavy fluid using nonlocal elasticity", Nanomater., 12(15), 2676. https://doi.org/10.3390/nano12152676.
  20. Barretta, R., Iuorio, A., Luciano, R. and Vaccaro, M.S. (2024), "Wave solutions in nonlocal integral beams", Continuum Mech. Therm., 1-21. https://doi.org/10.1007/s00161-024-01319-y.
  21. Barretta, R., Marotti de Sciarra, F. and Vaccaro, M.S. (2023), "Nonlocal elasticity for nanostructures: A review of recent achievements", Encyclopedia, 3(1), 279-310. https://doi.org/10.3390/encyclopedia3010018.
  22. Broek, D. (1982), Elementary Engineering Fracture Mechanics, Springer Science & Business Media.
  23. Chouiyakh, H., Azrar, L., Alnefaie, K. and Akourri, O. (2017), "Vibration and multi-crack identification of Timoshenko beams under moving mass using the differential quadrature method", Int. Mech. Sci., 120, 1-11. https://doi.org/10.1016/j.ijmecsci.2016.11.014.
  24. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  25. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  26. Erdogan, F and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J.Appl. Mech., 64, 449-456. https://doi.org/10.1115/1.2788914.
  27. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  28. Forghani, M., Bazarganlari, Y., Zahedinejad, P. and Kazemzadeh-Parsi, M.J. (2022), "Nonlinear frequency behavior of cracked functionally graded porous beams resting on elastic foundation using Reddy shear deformation theory", J. Vib. Control, 29(11-12), 10775463221080213. https://doi.org/10.1177/10775463221080213.
  29. Ghannadiasl, A. and Khodapanah Ajirlou, S. (2020), "Dynamic analysis of multiple cracked Timoshenko beam under moving load-analytical method", J. Vib. Control, 28, 379-395. https://doi.org/10.1177/1077546320977596.
  30. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837. https://doi.org/10.1007/s00707-016-1705-3. https://doi.org/10.1080/10589759.2015.1071812.
  31. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
  32. Ke, L.-L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16, 488-502. https://doi.org/10.1080/15376490902781175.
  33. Khaji, N., Shafiei, M. and Jalalpour, M. (2009), "Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions", Int. J. Mech. Sci., 51, 667-681. https://doi.org/10.1016/j.ijmecsci.2009.07.004.
  34. Khiem, N.T. and Hang, P.T. (2017), "Analysis and identification of multiple-cracked beam subjected to moving harmonic load", J. Vib. Control, 24, 2782-2801. https://doi.org/10.1177/1077546317694496.
  35. Khiem, N.T. and Huyen, N.N. (2017), "A method for crack identification in functionally graded Timoshenko beam", Nondestruct. Test. Eval., 32, 319-341. https://doi.org/10.1080/10589759.2016.1226304.
  36. Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency analysis of a multiple cracked beam", J. Sound Vib., 245, 737-751. https://doi.org/10.1006/jsvi.2001.3585.
  37. Khiem, N.T., Tran, H.T. and Nam, D. (2020), "Modal analysis of cracked continuous Timoshenko beam made of functionally graded material", Mech. Based Des. Struct. Mach., 48, 459-479. https://doi.org/10.1080/15397734.2019.1639518.
  38. Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound Vib., 324, 962-982. https://doi.org/10.1016/j.jsv.2009.02.023.
  39. Lamprea-Pineda, A.C., Connolly, D.P. and Hussein, M.F.M. (2022), "Beams on elastic foundations - A review of railway applications and solutions", Transport. Geotech., 33, 100696. https://doi.org/10.1016/j.trgeo.2021.100696.
  40. Lee, J. (2009), "Identification of multiple cracks in a beam using vibration amplitudes", J. Sound Vib., 326, 205-212. https://doi.org/10.1016/j.jsv.2009.04.042.
  41. Lien, T.V., Duc, N.T. and Khiem, N.T. (2017), "Free vibration analysis of multiple cracked functionally graded Timoshenko beams", Lat. Am. J. Solid. Struct., 14, 1752-1766. https://doi.org/10.1590/1679-78253693.
  42. Lin, H.P. and Chang, S.C. (2006), "Forced responses of cracked cantilever beams subjected to a concentrated moving load", Int. J. Mech. Sci., 48, 1456-1463. https://doi.org/10.1016/j.ijmecsci.2006.06.014.
  43. Loya, J.A., Aranda-Ruiz, J. and Zaera, R. (2022), "Natural frequencies of vibration in cracked Timoshenko beams within an elastic medium", Theor. Appl. Frac. Mech., 118, 103257. https://doi.org/https://doi.org/10.1016/j.tafmec.2022.103257.
  44. Loya, J.A., Rubio, L. and Fernandez-Saez, J. (2006), "Natural frequencies for bending vibrations of Timoshenko cracked beams", J. Sound Vib., 290, 640-653. https://doi.org/10.1016/j.jsv.2005.04.005.
  45. Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S.L. (2012), "Functionally graded material: An overview", Proceedings of the World Congress on Engineering 2012 Vol III (WCE 2012), London, UK, July.
  46. Mahmoud, F.F., El-Shafei, A.G., Al-Shorbagy, A.E. and Abdel Rahman, A.A. (2008), "A numerical solution for quasistatic viscoelastic frictional contact problems", J. Tribol., 130(1), 011012. https://doi.org/10.1115/1.2806202.
  47. Mahmoud, F.F., El-Shafei, A.G., Attia, M.A. and Rahman, A.A. (2013), "Analysis of quasistatic frictional contact problems in nonlinear viscoelasticity with large deformations", Int. J. Mech. Sci., 66, 109-119. https://doi.org/10.1016/j.ijmecsci.2012.11.001.
  48. Mukherjee, S. and Prathap, G. (2001), "Analysis of shear locking in Timoshenko beam elements using the function space approach", Commun. Numer. Meth. Eng., 17, 385-393. https://doi.org/10.1002/cnm.413.
  49. Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Abdelrahman, A.A. (2022), "Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements methods", Steel Compos. Struct., 45(5), 697-713. https://doi.org/10.12989/scs.2022.45.5.697.
  50. Nabawy, A.E., Abdelrahman, A.A., Abdalla, W.S., Abdelhaleem, A.M. and Alieldin, S.S. (2019), "Analysis of the dynamic behavior of the double wishbone suspension system", Int. J. Appl. Mech., 11(05), 1950044. https://doi.org/10.1142/S1758825119500443.
  51. Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mech., 228, 141-155.
  52. Nikbakht, S., Kamarian, S. and Shakeri, M. (2019), "A review on optimization of composite structures Part II: Functionally graded materials", Compos. Struct., 214, 83-102. https://doi.org/10.1016/j.compstruct.2019.01.105.
  53. Nikkhoo, A. and Sharifinejad, M. (2020), "The impact of a crack existence on the inertial effects of moving forces in thin beams", Mech. Res. Commun., 107, 103562. https://doi.org/10.1016/j.mechrescom.2020.103562.
  54. Onate, E. (2013), Structural Analysis with the Finite Element Method. Linear Statics: Volume 2: Beams, Plates and Shells, Springer Science & Business Media.
  55. Ozturk, H., Kiral, Z. and Kiral, B.G. (2016), "Dynamic analysis of elastically supported cracked beam subjected to a concentrated moving load", Lat. Am. J. Solid. Struct., 13, 175-200. https://doi.org/10.1590/1679-78252195.
  56. Panigrahi, B. and Pohit, G. (2018), "Study of non-linear dynamic behavior of open cracked functionally graded Timoshenko beam under forced excitation using harmonic balance method in conjunction with an iterative technique", Appl. Math. Model., 57, 248-267. https://doi.org/10.1016/j.apm.2018.01.022.
  57. Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
  58. Reddy, J.N. (1997), "On locking-free shear deformable beam finite elements", Comput. Meth. Appl. Mech. Eng., 149, 113-132. https://doi.org/10.1016/S0045-7825(97)00075-3.
  59. Ren, L., Wang, Z., Ren, L., Han, Z., Liu, Q. and Song, Z. (2022), "Graded biological materials and additive manufacturing technologies for producing bioinspired graded materials: An overview", Composi. Part B: Eng., 242, 110086. https://doi.org/10.1016/j.compositesb.2022.110086.
  60. Sarvestan, V., Mirdamadi, H.R. and Ghayour, M. (2017), "Vibration analysis of cracked Timoshenko beam under moving load with constant velocity and acceleration by spectral finite element method", Int. J. Mech. Sci., 122, 318-330. https://doi.org/10.1016/j.ijmecsci.2017.01.035.
  61. Songsuwan, W., Pimsarn, M. and Wattanasakulpong, N. (2018), "Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads", Int. J. Struct. Stabil. Dyn., 18(09), 1850112. https://doi.org/10.1142/S0219455418501122.
  62. Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331, 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020.
  63. Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93, 2992-3001. https://doi.org/10.1016/j.compstruct.2011.05.003.
  64. Zhu, L.F., Ke, L.L., Xiang, Y., Zhu, X.Q. and Wang, Y.S. (2020), "Vibrational power flow analysis of cracked functionally graded beams", Thin-Wall. Struct., 150, 106626. https://doi.org/10.1016/j.tws.2020.106626.