DOI QR코드

DOI QR Code

Upper bound solution on seismic anchor force and earth pressure of a combined retaining structure

  • Yu-liang Lin (School of Civil Engineering, Central South University) ;
  • Li Lu (School of Civil Engineering, Central South University) ;
  • Hao Xing (The Fourth Engineering Co., Ltd., China Railway Seventh Group) ;
  • Xi Ning (The Fourth Engineering Co., Ltd., China Railway Seventh Group) ;
  • Li-hua Li (Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology)
  • 투고 : 2023.12.16
  • 심사 : 2024.09.30
  • 발행 : 2024.10.25

초록

Gravity wall combined with anchoring frame beam is widely adopted to support a high slope under complex geomorphic condition, in which the rigid gravity wall is adopted as a lower structure and the flexible anchoring frame beam serves as an upper structure. The seismic anchor force and the seismic active earth pressure are two essential issues for the seismic design of combined retaining structure in high seismic intensity area. In this study, an analytical model of combined retaining structure is established based on the upper bound theorem of limit analysis, and the formulas for seismic anchor force and seismic active earth pressure of combined retaining structure are derived. The results are optimized by using the global optimization algorithm. The proposed method is verified by a comparison with previous method. Moreover, the influence of main parameters on seismic anchor force and seismic active earth pressure is analyzed to facilitate the seismic design of such combined retaining structure.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878667, 51678571, 51308551), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2517).

참고문헌

  1. Ahmed, S.M. and Basha, B.M. (2021), "External stability analysis of narrow backfilled gravity retaining walls", Geotech. Geol. Eng., 39(2), 1603-1620. https://doi.org/10.1007/s10706-020-01580-3
  2. Bera, A.K. (2014), "Parametric study on uplift capacity of anchor with tie in sand", KSCE J. Civ. Eng., 26(12), 5022-5037. https://doi.org/10.1007/s12205-014-0114-1. 
  3. Biondi, G., Cascone, E. and Maugeri, M. (2014), "Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls", Bull. Earthq. Eng., 12(3), 1239-1267. https://doi.org/10.1007/s10518-013-9542-4.
  4. Bishop, A.W. (1955), "The use of the slip circle in the stability analysis of slopes", Geotechnique, 5(1), 7-17. https://doi.org/10.1680/geot.1955.5.1.7.
  5. Cai, F. and Ugai, K. (2003), "Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM", Int. J. Numer. Anal. Method. Geomech., 27(7), 549-564. https://doi.org/10.1002/nag.284.
  6. Chen, W.F., Giger, M.W. and Fang, H.Y. (1969), "On the limit analysis of stability of slopes", Soils. Found., 9(4), 23-32. https://doi.org/10.3208/sandf1960.9.4_23.
  7. Das, S., Halder, K. and Chakraborty, D. (2022), "Seismic bearing capacity of shallow embedded strip footing on rock slopes", Geomech. Eng., 30(2), 123-138. https://doi.org/10.12989/gae.2022.30.2.123.
  8. Farshidfar, N.; Keshavarz, A. and Mirhosseini, S.M. (2021), "Seismic stability of reinforced soil slopes using the modified pseudo-dynamic method", Earthq. Struct., 20(5), 473-486. https://doi.org/10.12989/eas.2021.20.5.473.
  9. Greco, V. R. (2014), "Analytical solution of seismic pseudo-static active thrust acting on fascia retaining walls", Soil Dyn. Earthq. Eng., 57, 25-36. https://doi.org/10.1016/j.soildyn.2013.09.022.
  10. Hong, S.W., Geum, D.H. and Seo, M. (2022), "Ultimate uplift capacity relation of plate anchor using model testing", KSCE J. Civ. Eng., 26(12), 5022-5037. https://doi.org/10.1007/s12205-022-1210-2.
  11. Hwang, G.S. and Chen, C.H. (2011), "Analysis of cases of gravity quay wall movement during earthquakes", Geotechnique, 61(3), 199-210. https://doi.org/10.1680/geot.3625.
  12. Jo, S.B., Ha, J.G., Lee, J.S. and Kim, D.S. (2017), "Evaluation of the seismic earth pressure for inverted T-shape stiff retaining wall in cohesionless soils via dynamic centrifuge", Soil Dyn. Earthq. Eng., 92, 345-357. https://doi.org/10.1016/j.soildyn.2016.10.009.
  13. Kang, J.G., Kim, Y.S. and Kang, G.U. (2023), "Plift capacity of single vertical belled pile embedded at shallow depth", Geomech. Eng. 35(2), 165-179. https://doi.org/10.12989/gae.2023.35.2.165.
  14. Kokusho, T. (2019), "Energy-based newmark method for earthquake-induced slope displacements", Soil Dyn. Earthq. Eng., 121, 121-134. https://doi.org/10.1016/j.soildyn.2019.02.027.
  15. Krabbenhoft, K. (2018), "Static and seismic earth pressure coefficients for vertical walls with horizontal backfill", Soil Dyn. Earthq. Eng., 104, 403-407. https://doi.org/10.1016/j.soildyn.2017.11.011.
  16. Lee, D.G., Lee, S.Y. and Song, K.I. (2023), "Development of stability evaluation system for retaining walls: Differential evolution algorithm-artificial neural network", Geomech. Eng., 34(3), 329-339. https://doi.org/10.12989/gae.2023.34.3.329.
  17. Lee, J., Liu, Q. and Park, H.J. (2019), "Effect of earthquake motion on the permanent displacement of embankment slopes", KSCE J. Civ. Eng., 23(10), 4174-4189. https://doi.org/10.1007/s12205-019-1833-0.
  18. Li, Y.X. and Yang, X.L. (2018), "Three-dimensional seismic fisplacement analysis of rock slopes based on Hoek-Brown failure criterion", KSCE J. Civ. Eng., 22(11), 4334-4344. https://doi.org/10.1007/s12205-018-3022-y.
  19. Lian, J., Ding, X.M. and Zhang, L. (2023), "Shaking table test on seismic response of an accumulation landslide reinforced by pile-plate retaining wall based on the time-frequency analysis method", J. Cent. South Univ., 30(5), 1710-1721. https://doi.org/10.1007/s11771-023-5323-7.
  20. Lim, H. and Jeong, S. (2020), "Effect of bedrock acceleration on dynamic and pseudo-static analyses of soil-pile systems", Comput. Geotech., 126(2), 103657. https://doi.org/10.1016/j.compgeo.2020.103657.
  21. Lim, H., Park, J., Kim, J. and Ko, J. (2023), "Numerical study on stability and deformation of retaining wall according to groundwater drawdown", Geomech. Eng., 33(2), 195-202. https://doi.org/10.12989/gae.2023.33.2.195.
  22. Lin, Y.L., Lu, L., Li, Y.X., Xue, Y., Feng, Z.J., Wang, Z.M. and Yang, G.L. (2020c), "On determining seismic anchor force of anchoring frame structure supporting three-stage slope", Geomech. Eng., 22(3), 265-275. https://doi.org/10.12989/gae.2020.22.3.265.
  23. Lin, Y.L., Cheng, X.M., Yang, G.L. and Li, Y. (2018), "Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test", Soil Dyn. Earthq. Eng., 115, 352-364. https://doi.org/10.1016/j.soildyn.2018.07.028.
  24. Lin, Y.L., Jin, J., Jiang, Z.H., Liu, W., Liu, H.D., Li, R.F. and Liu, X. (2022), "Seismic response of combined retaining structure with inclined rock slope", Struct. Eng. Mech., 84(5), 591-604. https://doi.org/10.12989/sem.2022.84.5.591.
  25. Lin, Y.L., Li, Y.X., Yang, G.L. and Li, Y. (2017a), "Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass", Soil Dyn. Earthq. Eng., (98), 12-23. https://doi.org/10.1016/j.soildyn.2017.04.008.
  26. Lin, Y.L., Li, Y.X., Zhao, L.H. and Yang, T.Y. (2020b), "Investigation on seismic response of a three-stage soil slope supported by anchor frame structure", J. Cent. South Univ., 27(4), 1290-1305. https://doi.org/10.1007/s11771-020-4367-1.
  27. Lin, Y.L., Lu, L. and Yang G.L. (2020a), "Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: a comparison", Environ. Earth Sci., 79(3), 78. https://doi.org/10.1007/s12665-020-8817-8.
  28. Lu, L., Lin, Y.L., Guo, D.D., Xing, H., Zhang, Z. and Duan, J.Y. (2023), "A modified newmark block method for determining the seismic displacement of a slope reinforced by prestressed anchors", Comput. Geotech., 162, 105697. https://doi.org/10.1016/j.compgeo.2023.105697.
  29. Motlagh, A.T., Ghanbari, A., Maedeh, P.A. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. https://doi.org/10.12989/eas.2018.15.6.687.
  30. Nian, T.K., Jiang, J.C., Wang, F.W., Yang, Q. and Luan, M.T. (2016), "Seismic stability analysis of slope reinforced with a row of oiles", Soil Dyn, Earthq. Eng., 84, 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023.
  31. Nouri, H., Fa Kher, A. and Jones, C. (2008), "Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembranes, 26(3), 263-278. https://doi.org/10.1016/j.geotexmem.2007.09.002.
  32. Shin, H. (2023), "Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area", Geomech. Eng., 34(2), 187-195. https://doi.org/10.12989/gae.2023.34.2.187.
  33. Soubra, A.H. (2000), "Static and seismic passive earth pressure coefficients on rigid retaining structures", Can. Geotech. J., 37(2), 463-478. https://doi.org/10.1139/t99-117.
  34. Srikar, G. and Mittal, S. (2021), "Modified pseudo-dynamic analysis of rigid gravity retaining wall with cohesion-less backfill and uniform surcharge", Geomech. Eng., 26(5), 453-464. https://doi.org/10.12989/gae.2021.26.5.453.
  35. Steedman, R.S. and Zeng, X. (1990), "The Influence of phase on the calculation of pseudo-static earth pressure on a retaining wall", Geotechnique, 40(1), 103-112. https://doi.org/10.1016/0148-9062(90)93144-b
  36. Sun, C., Chai, J., Luo, T., Xu, Z. and Ma, B. (2021), "Nonlinear shear-strength reduction technique for stability analysis of uniform cohesive slopes with a general nonlinear failure criterion", Int. J. Geomech., 21(1), 06020033. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001885.
  37. Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. https://doi.org/10.12989/eas.2018.14.2.179.
  38. Trandafir, A.C., Kamai, T. and Sidle, R.C. (2009), "Earthquake-induced displacements of gravity retaining walls and anchorreinforced slopes", Soil Dyn. Earthq. Eng., 29(3), 428-437. https://doi.org/10.1016/j.soildyn.2008.04.005.
  39. Yan, M., Xia, Y., Liu, T. and Bowa, V.M. (2019), "Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables", Comput. Geotech., 108, 226-233. https://doi.org/10.1016/j.compgeo.2018.12.027.
  40. Yazdandoust, M., Jamnani, A.R. and Sabermahani, M. (2023), "Seismic evaluation of metal-strip reinforced soil walls considering the effect of wall configuration-a shaking table study", J. Earthq. Eng., 27(14), 3929-3956. https://doi.org/10.1080/13632469.2022.2091685.
  41. Zhang, B.A., Jiang, J., Zhang, D.B. and Liu, Z. (2021), "Upper bound solution of collapse pressure and permanent displacement of 3D tunnel faces using the pseudo-dynamic method and the kinematic approach", Geomech. Eng., 25(6), 521-533. https://doi.org/10.12989/gae.2021.25.6.521.
  42. Zhang, Z., Lin, Y., Zhang, H., He, B., Yang, G. and Xu, Y. (2024), "A field investigation on an expansive soil slope supported by a sheet-pile retaining structure", Struct. Eng. Mech., 91(3), 315-324. https://doi.org/10.12989/sem.2024.91.3.315.
  43. Zhao, L.H., Zuo, S., Lin, Y.L., Li, L. and Zhang, Y. (2016), "Reliability back analysis of shear strength parameters of landslide with three-dimensional upper bound limit analysis theory", Landslides, 13(4), 711-724. https://doi.org/10.1007/s10346-015-0604-3.
  44. Zhong, J.H. and Yang, X.L. (2021), "Seismic stability of three-dimensional slopes considering the nonlinearity of soils", Soil Dyn. Earthq. Eng., 140(4), 106334. https://doi.org/10.1016/j.soildyn.2020.106334.