Acknowledgement
This research was financially supported by National Natural Science Foundation of China under grant NO. 51578136, Postgraduate Research & Practice Innovation Program of Jiangsu Province under grant NO. KYCX22_0219, and China Scholarship Council under grant NO. 202306090255.
References
- AbuGazia, M., Damatty, A.E., Dai. K., Liu, W.S. and Ezami, N. (2023), "Evaluation of horizontal-axis-three-blade wind turbines", Wind. Struct. 37(6), 413-423. https://doi.org/10.12989/was.2023.37.6.413.
- Du, S.C., Keller, T., Chen, J.X. and Li, Y.S. (2023), "Experimental and theoretical study on out-of-plane compression buckling properties of grid beetle elytron plate", Arch. Appl. Mech. 93(11), 4143-4155. https://doi.org/10.1007/s00419-023-02486-1.
- Du, S.J., Zhou, J.W. and Li, F.M. (2022), "Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades", Wind. Struct. 35(5), 353-368. https://doi.org/10.12989/was.2022.35.5.353.
- GB/T1447-2005 (2005), Test Method for Tensile Properties of Fiber Reinforced Plastics. Beijing, China Standards Press. (In Chinese)
- Geng, F., Suiker, A.S.J., Rezaeiha, A., Montazeri, H. and Blocken, B. (2023), "A computational framework for the lifetime prediction of vertical-axis wind turbines: CFD simulations and high-cycle fatigue modeling", Int. J. Solids. Struct. 284, 112504. https://doi.org/10.1016/j.ijsolstr.2023.112504.
- Gorgun, E. (2024), "Numerical analysis of inflow turbulence intensity impact on the stress and fatigue life of vertical axis hydrokinetic turbine", Phys. Fluids. 36(1), 015111. https://doi.org/10.1063/5.0186608.
- Hijazi, A., Elcheikh, A. and Elkhoury, M. (2023), "Numerical investigation of the use of flexible blades for vertical axis wind turbines", Energ. Convers. Manage. 299, 117867. https://doi.org/10.1016/j.enconman.2023.117867.
- Jonkman, J.M., Butterfield, S., Musial, W. and Scott, G. (2009). "Definition of a 5MW reference wind turbine for offshore system development", Office of Scientific and Technical Information Technical Reports. 16-75.
- Li, A.T., Sun, Y. and Song, X.B. (2023), "Gradual improvement and reactive intervention: China's policy pathway for developing the wind power industry", Renew. Energ. 216, 119068. https://doi.org/ 10.1016/j.renene.2023.119068.
- Li, W.Y., Xiong, Y.X., Su, G.L., Ye, Z.Y., Wang, G.W. and Chen, Z. (2023), "The aerodynamic performance of horizontal axis wind turbines under rotation condition", Sustainability-Basel. 15(16), 12553. https://doi.org/10.3390/su151612553.
- Li, Y.F., Hung, J.Y., Syu, J.Y., Chang, S.M. and Kuo, W.S. (2023), "Influence of sizing of basalt fiber on the mechanical behavior of basalt fiber reinforced concrete", J. Mater. Res. Technol. 21, 295-307. https://doi.org/10.1016/j.jmrt.2022.09.045.
- Liu, J.W., Liu, P.F., Leng, J.X. and Wang, C.Z. (2022), "Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part I: Full-scale structure", Compos. Struct. 301, 116212. https://doi.org/10.1016/j.compstruct.2022.116212.
- Marzec, L., Bulinski, Z., Krysinski, T. and Tumidajski, J. (2023), "Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach", Renew. Energ. 216, 118957. https://doi.org/10.1016/j.renene.2023.118957.
- Shi, C.C., Jin, S.J., Jin, B. and Xu, J.Y. (2024), "Enhancing bonding behavior between basalt fiber-reinforced polymer sheets and concrete using resin pre-coating method and multiwall carbon nanotubes", J. Build. Eng. 84, 108695. https://doi.org/10.1016/j.jobe.2024.108695.
- Tan, X.J., Cao, B., Liu, W.C., Ji, C.M., Wang, B. and Li, S. (2024), "Odd mechanical metamaterials with simultaneously expanding or contracting under both compression and tension", Thin. Wall. Struct. 203, 112225. https://doi.org/10.1016/j.tws.2024.112225.
- Tian, K.Q., Song, L., Chen, Y.Y., Jiao, X.F., Feng, R. and Tian, R. (2022), "Stress coupling analysis and failure damage evaluation of wind turbine blades during strong winds". Energies. 15, 1339. https://doi.org/10.3390/en15041339.
- Tuo, W.Y., Yan, L., Chen, J.X., Chang, X.L., Gao, Y.B. and Wang, Y. (2021), "Effect of the length of basalt fibers on the shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates", J. Sandw. Struct. Mater. 23, 1527-1540. https://doi.org/10.1177/1099636219900344.
- Zhang, S. and Law, A.W.K. (2024). "Performance of Reynolds averaged Navier-Stokes and large eddy simulation models in simulating flows in a crossflow ultraviolet reactor: An experimental evaluation", Water. 16(2), 271. https://doi.org/10.3390/w16020271.
- Zhang, Y., Li, L., Wang, L., Zhu, W.D., Li, Y.H. and Wu, J.Q. (2024), "An approximate method for aerodynamic optimization of horizontal axis wind turbine blades", Wind Struct., 38(5), 341-354. https://doi.org/10.12989/was.2024.38.5.341.
- Zhao, C.Q., Zheng, T.T., Shang, L.J., Lan, H.T. and Yang, S. (2023), "Research and optimization of lateral compressive performance of the 3-D printed beetle elytron plate" KSCE J. Civ. Eng. 27(8), 3517-3527. https://doi.org/10.1007/s12205-023-2388-7.
- Zhao, M., Yu, W.L., Wang, P.G., Qu, Y. and Du, X.L. (2024), "Numerical study on the aerodynamic and fluid-structure interaction of an NREL-5MW wind turbine", China. Ocean. Eng., https://doi.org/10.1007/s13344-024-0030-1.
- Zheng, T.T., Zhao, C.Q. and He, J.H. (2023), "Research on fatigue performance of offshore wind turbine blade with basalt fiber bionic plate", Structures. 47, 466-481. https://doi.org/10.1016/j.istruc.2022.11.082.
- Zheng, X., Yao, Y., Hu, Z.H., Yu, Z.Y. and Hu, S.Y. (2023), "Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method", Appl. Sci-Basel. 13, 250. https://doi.org/10.3390/app13010250.