Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(NRF-2020R1F1A1073469). This article is based on research conducted as part of the first author's master's thesis at Ewha Womans University, with portions previously presented at the 2022 ICCE conference.
References
- Al-Taani, M. H. (2018). Integrative and instrumental motivations for learning English as a university requirement among undergraduate students at Al-Jazeera University. International Journal of Learning and Development, 8(4), 89-105.
- Bobadilla, J., Hernando, A., Ortega, F., & Gutierrez, A. (2012). Collaborative filtering based on significances. Information Sciences, 185(1), 1-17.
- Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Shah, H. (2016, September). Wide & deep learning for recommender systems [Paper presentation]. The 1st workshop on deep learning for recommender systems (pp. 7-10). Boston, United States. https://doi.org/10.1145/2988450.2988454
- Davidsson, C., & Moritz, S. (2011, February). Utilizing implicit feedback and context to recommend mobile applications from first use [Paper presentation]. 2011 Workshop on Context-awareness in Retrieval and Recommendation (pp. 19-22). Palo Alto, CA, United States. https://doi.org/10.1145/1961634.1961639
- da Silva, F. L., Slodkowski, B. K., da Silva, K. K. A., & Cazella, S. C. (2023). A systematic literature review on educational recommender systems for teaching and learning: Research trends, limitations and opportunities. Education and Information Technologies, 28(3), 3289-3328. https://doi.org/10.1007/s10639-022-11341-9
- Dornyei, Z., & Kormos, J. (2000). The role of individual and social variables in oral task performance. Language Teaching Research, 4(3), 275-300.
- Essalmi, F., Ayed, L. J. B., Jemni, M., & Graf, S. (2015). Generalized metrics for the analysis of E-learning personalization strategies. Computers in Human Behavior, 48, 310-322.
- Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681.
- Felder, R. M., & Solomon, B. A. (1996)., Index of Learning Styles Questionnaire. https://www.webtools.ncsu.edu/learningstyles/
- Fernandez-Garcia, A. J., Rodriguez-Echeverria, R., Preciado, J. C., Manzano, J. M. C., & Sanchez-Figueroa, F. (2020). Creating a recommender system to support higher education students in the subject enrollment decision. IEEE Access, 8, 189069-189088. https://doi.org/10.1109/ACCESS.2020.3031572
- Garcia-Martinez, S., & Hamou-Lhadj, A. (2013). Educational recommender systems: A pedagogical-focused perspective. In G. A. Tsihrintzis, M. Virvou, & L. C. Jain (Eds.), Multimedia services in intelligent environments: Recommendation services (Vol. 25, pp. 113-124). Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00375-7_8
- Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225-2236.
- Geron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc.
- Gromping, U. (2009). Variable importance assessment in regression: linear regression versus random forest. The American Statistician, 63(4), 308-319.
- Han, J. & Lim, H. S. (2017, August 10-11) Analysis of the effectiveness of the recommendation model for the customized learning course [Conference presentation]. The Korean Association of Computer Education 2017 Annual Conference (pp. 221-224), Daegu, Republic of Korea
- Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education promises and implications for teaching and learning. Center for Curriculum Redesign.
- Huang, L., Wang, C.-D., Chao, H.-Y., Lai, J.-H., & Yu, P. S. (2019). A score prediction approach for optional course recommendation via cross-userdomain collaborative filtering. IEEE Access, 7, 19550-19563. https:// doi. org/ 10. 1109/ ACCESS. 2019. 28979 79 https://doi.org/10.1109/ACCESS.2019.2897979
- Ismail, H. M., Belkhouche, B., & Harous, S. (2019). Framework for personalized content recommendations to support informal learning in massively diverse information Wikis. IEEE Access, 7, 172752-172773. https://doi.org/10.1109/ACCESS.2019.29562 84
- Jung, S., (2019) A case study of college students' use of mobile applications and their perception of AI-based Apps. The Journal of Mirae English Language and Literature, 24(3), 303-330.
- Klasnja-Milicevic, A., Vesin, B., & Ivanovic, M. (2018). Social tagging strategy for enhancing e-learning experience. Computers & Education, 118, 166-181. https:// doi. org/ 10. 1016/j. compe du. 2017. 12. 002 https://doi.org/10.1016/j.compedu.2017.12.002
- Lee, H., So, H., & Jin, L. (2020). Analysis of the characteristics and design level of educational artificial intelligence applications. Journal of Korean Association for Educational Information and Media, 26(3), 647-670.
- Lightbown, P. M., & Spada, N. (2021). How languages are learned 5th Edition. Oxford University Press.
- Nabizadeh, A. H., Goncalves, D., Gama, S., Jorge, J., & Rafsanjani, H. N. (2020). Adaptive learning path recommender approach using auxiliary learning objects. Computers & Education, 147, 103777-103793. https:// doi. org/ 10. 1016/j. compe du. 2019. 103777 https://doi.org/10.1016/j.compedu.2019.103777
- Nafea, S. M., Siewe, F., & He, Y. (2019). On Recommendation of learning objects using Felder-Silverman learning style model. IEEE Access, 7, 163034-163048. https:// doi. org/ 10. 1109/ ACCESS. 2019. 2935417 https://doi.org/10.1109/ACCESS.2019.2935417
- Pesovski, I., Bogdanova, A. M., & Trajkovik, V. (2022, November). Systematic review of the published explainable educational recommendation systems. 2022 20th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-8). Antalya, Turkey, https://doi.org/10.1109/ITHET56107.2022.10032029
- Pimenidis, E., Polatidis, N., & Mouratidis, H. (2018). Mobile recommender systems: Identifying the major concepts. Journal of Information Science, 45, 387-397. https://doi.org/10.1177/0165551518792213
- Premlatha, K. R., Dharani, B., & Geetha, T. V. (2016). Dynamic learner profiling and automatic learner classification for adaptive e-learning environment. Interactive Learning Environments, 24(6), 1054-1075.
- Qiao, C. (2024). Factors influencing second language learning based on the research of Lightbown and Spada. Frontiers in Psychology, 15, https://doi.org/10.3389/fpsyg.2024.1347691
- Rahman, M. M., & Abdullah, N. A. (2018). A personalized group-based recommendation approach for web search in E-Learning. IEEE Access, 6, 34166-34178. https:// doi. org/ 10. 1109/ ACCESS. 2018.28503 76 https://doi.org/10.1109/ACCESS.2018.2850376
- Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and challenges. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (pp. 1-34). Springer. https://doi.org/10.1007/978-1-4899-7637-6_1.
- Santos, O. C., & Boticario, J. G. (2012). Educational recommender systems and technologies: Practices and challenges. IGI Global.
- Scholz, M., Dorner, V., Schryen, G., & Benlian, A. (2017). A configuration-based recommender system for supporting e-commerce decisions. European Journal of Operational Research, 259(1), 205-215.
- Sergis, S., & Sampson, D. G. (2016). Learning object recommendations for teachers based on elicited ICT competence profiles. IEEE Transactions on Learning Technologies, 9(1), 67-80. https:// doi. org/ 10.1109/ TLT. 2015. 24348 24
- Tarus, J. K., Niu, Z., & Yousif, A. (2017). A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining. Future Generation Computer Systems, 72, 37-48. https://doi.org/10.1016/j.future.2017.02.049
- Vultureanu-Albisi, A., & Badica, C. (2021). Recommender systems: an explainable AI perspective. 2021 International Conference on Innovations in Intelligent Systems and Applications (INISTA) ( pp. 1-6). https://doi.org/10.1109/INISTA52262.2021.9548125
- Wan, S., & Niu, Z. (2016). A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm. Knowledge-Based Systems, 103, 28-40. https:// doi. org/ 10. 1016/j. knosys.2016. 03. 022 https://doi.org/10.1016/j.knosys.2016.03.022
- Wan, S., & Niu, Z. (2018). An e-learning recommendation approach based on the self-organization of learning resource. Knowledge-Based Systems, 160, 71-87. https:// doi. org/ 10. 1016/j. knosys. 2018. 06.014 https://doi.org/10.1016/j.knosys.2018.06.014
- Wan, S., & Niu, Z. (2020). A hybrid E-Learning recommendation approach based on learners' influence propagation. IEEE Transactions on Knowledge and Data Engineering, 32(5), 827-840. https://doi.org/10.1109/TKDE.2019.2895033
- Williamson, B. D., Gilbert, P. B., Simon, N. R., & Carone, M. (2023). A general framework for inference on algorithm-agnostic variable importance. Journal of the American Statistical Association, 118(543), 1645-1658.
- Wu, D., Lu, J., & Zhang, G. (2015). A Fuzzy Tree Matching-based personalized ELearning recommender system. IEEE Transactions on Fuzzy Systems, 23(6), 2412-2426. https:// doi. org/ 10. 1109/ TFUZZ. 2015. 2426201 https://doi.org/10.1109/TFUZZ.2015.2426201
- Wu, Z., Li, M., Tang, Y., & Liang, Q. (2020). Exercise recommendation based on knowledge concept prediction. Knowledge-Based Systems, 210, 106481-106492. https:// doi. org/ 10. 1016/j. knosys. 2020.106481 https://doi.org/10.1016/j.knosys.2020.106481
- Yanes, N., Mostafa, A. M., Ezz, M., & Almuayqil, S. N. (2020). A machine learningbased recommender system for improving students learning experiences. IEEE Access, 8, 201218-201235. https://doi.org/10.1109/ACCESS.2020.3036336
- Yuen, C. L., & Schlote, N. (2024). Learner experiences of mobile apps and artificial intelligence to support additional language learning in education. Journal of Educational Technology Systems, 52 (4) https://doi.org/10.1177/00472395241238693
- Zapata, A., Menendez, V. H., Prieto, M. E., & Romero, C. (2015). Evaluation and selection of group recommendation strategies for collaborative searching of learning objects. International Journal of Human-Computer Studies, 76, 22-39. https:// doi. org/ 10. 1016/j. ijhcs. 2014. 12. 002 https://doi.org/10.1016/j.ijhcs.2014.12.002
- Zhang, Y., & Chen, X. (2020). Explainable recommendation: A survey and new perspectives. Foundations and Trends® in Information Retrieval, 14(1), 1-101