DOI QR코드

DOI QR Code

전해채취로 회수된 갈륨을 이용한 산화갈륨 나노분말 제조공정 개발

Development of the manufacturing process for gallium oxide nanopowder using recycled gallium through electrowinning

  • 박정원 (퀀타머티리얼즈) ;
  • 유경주 (퀀타머티리얼즈) ;
  • 권준범 (퀀타머티리얼즈) ;
  • 이혁재 (국립안동대학교 전기신소재공학부)
  • Jung Won Park (Quanta Materials) ;
  • Kyoung Joo Yu (Quanta Materials) ;
  • Jun Beom Kwon (Quanta Materials) ;
  • Hyukjae Lee (School of Materials Science and Engineering, Andong National University)
  • 투고 : 2024.09.11
  • 심사 : 2024.09.24
  • 발행 : 2024.10.31

초록

TFT(Thin-Film Transistor) 타겟, LED(Light Emitting Diode) 분야의 핵심 소재인 갈륨은 그 희소성으로 인해 폐기물로부터 회수 및 재활용에 대한 관심을 많이 받고있다. 본 연구에서는 갈륨이 포함된 전해액으로부터 고순도 갈륨을 회수하여 IGZO(Indium Gallium Zinc Oxide) 타겟용 산화갈륨 나노분말을 제조하는 공정을 개발하고자 하였다. 갈륨이 용해된 알카리성 전해액 대한 전해채취 공정 연구를 통해 각 공정 요소의 영향과 최적 공정 조건을 알아 보았으며 그 결과 NaOH 농도가 순도에 큰 영향을 끼친다는 점을 확인하였고, 2차례에 걸친 전해채취와 산세척을 통해 99.995 % 이상의 순도를 가지는 갈륨의 회수가 가능하였다. 회수된 갈륨을 재료로 기상법을 이용해 산화갈륨 나노분말을 제조한 결과 온도가 높을수록 수율은 증가하나 순도가 떨어짐을 확인할 수 있었으며, 1,260℃에서 99.995 % 이상의 순도를 지닌 산화갈륨 나노분말을 90 %에 가까운 수율로 얻을 수 있었다. 산화갈륨 나노분말은 대부분 2 ㎛ 정도 크기와 구형의 형상을 가지고 있어 소결 등 추후 공정에 유리한 특성을 가지고 있을 것으로 기대된다.

Gallium, a key material in TFT (Thin-Film Transistor) targets and LED (Light Emitting Diode), is highly sought after due to its scarcity, making the recovering and recycling from waste resources. This study develops a process to recover high-purity gallium contained in an alkaline electrolyte and to produce gallium oxide nanopowder for IGZO (Indium Gallium Zinc Oxide) targets. Through an investigation of the electrowinning process conditions, the effects of various process factors and the optimal conditions are identified. It is found that the concentration of NaOH significantly affects purity. By employing two rounds of electrowinning followed by acid washing, gallium with a purity of over 99.995 % is successfully recovered. Using this recovered gallium as a starting material, gallium oxide is produced via a gas-phase synthesis. It is observed that while higher temperatures increase the yield, the purity decreases. Ultimately, at 1,260℃, gallium oxide nanopowder with a purity exceeding 99.995 % is obtained with a yield close to 90 %. The gallium oxide nanopowder predominantly exhibits a size of approximately 2 ㎛ and a spherical shape, suggesting favorable characteristics for subsequent processes such as sintering.

키워드

과제정보

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었음.

참고문헌

  1. Z. Zhao, Y. Yang, Y. Xiao and Y. Fan, "Recovery of gallium from Bayer liquor: a review", Hydrometallurgy 125-126 (2012) 115.
  2. M. Frenzel, M.P. Ketris, T. Seifert and J. Gutzmer, "On the current and future availability of gallium", Resources Policy 47 (2016) 38.
  3. E. Fortunato, P. Barquinha and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances", Adv. Mater. 24 (2014) 2945.
  4. J. Ramanujam and U. Singh, "Copper indium gallium selenide based solar cells - a review", Energy Environ. Sci. 9 (2017) 1306.
  5. I.B. Illes and T. Kekesi, "The production of high-purity gallium from waste LEDs by combining sulfuric acid digestion, cation-exchange and electrowinning", J. Environ. Chem. Eng. 11 (2023) 110391.
  6. B. Swain, C. Mishra, L. Kang, K.S. Park, C.G. Lee and H.S. Hong, "Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching", Environ. Res. 138 (2015) 401.
  7. T. Nakamura, A. Sakai, S. Nishihama and K Yoshizuka, "Solvent extraction of indium, gallium, and zinc ions with acidic organophosphates having bulky alkyl groups", Solvent Extract. Ion Exch. 27 (2009) 501.
  8. T.H. Nguyen and M.S. Lee, "A review on separation of gallium and indium from leach liquors by solvent extraction and ion exchange", Mineral Proc. Extract. Metal. Rev. 40 (2018) 278.
  9. W.-S. Chen, Y.-C. Wang and K.-L. Chiu, "The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) target", J. Environ. Chem. Eng. 5 (2017) 381.
  10. S.H. Song and J.Y. Lee, "Method of manufacturing gallium oxide (Ga2O3) by separation and recovery of indium and gallium from IGZO waste scrap", KR101902903B1 (2018).
  11. S.H. Yang, W.K. Yoon, W.S. Ahn and J.Y. Chang, "Method of manufacturing gallium oxide for oxide semiconductor through wet recycling of indium, gallium, zinc oxide target", KR101546611B1 (2015).
  12. J.-Y. Jung, S.-H. Kim, E.-T. Kang, K.-S. Han, J.-H. Kim, K.-T. Hwang and W.-S. Cho, "Synthesis of Ga2O3 powders by precipitation method", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 8.
  13. B.K. Kang, H.D. Lim, S.R. Mang, K.M. Song, M.K. Jung, S.-W. Kim and D.H. Yoon, "Synthesis and characterization of monodispersed β-Ga2O3 nanospheres via morphology controlled Ga4(OH)10SO4 precursors", Langmuir 31 (2015) 83.
  14. J.-Y. Jung, S.-H. Kim, E.-T. Kang, K.-S. Han, J.-H. Kim, K.-T. Hwang and W.-S. Cho, "Synthesis of nano-sized Ga2O3 powders by polymerized complex method", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 302.
  15. J.W. Park, C.M. Won, J.B. Kwon and H. Lee, "Gas phase synthesis of Ga2O3 nanoparticles from gallium metal", J. Korean Cryst. Growth Cryst. Technol. 30 (2020) 220.
  16. J.W. Park and J.B. Kwon, "Method of high purity indium-gallium collection from IGZO waste target", KR20230095372A (2023).
  17. B. Im, J. Lee, C.G. Lee, S. Uhm, K.-S. Park, J.-G. Shim and J.-J. Park, "Study on electrowinning for recovery of Ga metal from MOCVD dust", J. Energy Climate Change 11 (2016) 82.
  18. Y.-J. Choi, S.-H. Hwang, D.-I. Jeon and K.-S. Han, "Method for making high purity gallium by electrowinning", J. Korean Inst. Resources Recycling 23 (2014) 63.