DOI QR코드

DOI QR Code

The Growing Potential of Long-Read Sequencing in Identifying Previously Elusive Causative Variants in Patients with Undiagnosed Rare Diseases

  • Yeonsong Choi (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • David Whee-Young Choi (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Hyeyeon Won (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Semin Lee (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2024.08.29
  • 심사 : 2024.09.12
  • 발행 : 2024.10.31

초록

Rare diseases, largely driven by genetic factors, present significant diagnostic challenges due to their complex genomic variations. Traditional short-read sequencing methods, such as whole-exome sequencing and whole-genome sequencing, are widely used to detect genomic alterations in a time- and cost-effective manner. However, some rare conditions are often left undiagnosed due to the technical limitations of current sequencing platforms. To overcome these limitations, long-read sequencing (LRS) technology has been applied to various fields of clinical research including rare diseases. With LRS, researchers are able to accurately characterize complex variants such as structural variations, tandem repeats, transposable elements, and transcript isoforms. This review article explores the current applications of LRS in rare disease research, highlighting its potential in identifying previously elusive causative variants in undiagnosed rare diseases.

키워드

참고문헌

  1. Ferreira CR. The burden of rare diseases. Am J Med Genet A 2019;179(6):885-92. doi: 10.1002/ajmg.a.61124. 
  2. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28(2):165-73. doi: 10.1038/s41431-019-0508-0. 
  3. Lim SS, Lee W, Kim YK, Kim J, Park JH, Park BR, et al. The cumulative incidence and trends of rare diseases in South Korea: a nationwide study of the administrative data from the National Health Insurance Service database from 2011-2015. Orphanet J Rare Dis 2019;14(1):49. doi: 10.1186/s13023-019-1032-6. 
  4. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of nextgeneration sequencing technology. Trends Genet 2014;30(9):418-26. doi: 10.1016/j.tig.2014.07.001. 
  5. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, et al. The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 2015;97(2):199-215. doi: 10.1016/j.ajhg.2015.06.009. 
  6. Sullivan JA, Schoch K, Spillmann RC, Shashi V. Exome/Genome sequencing in undiagnosed syndromes. Annu Rev Med 2023;74:489-502. doi: 10.1146/annurev-med-042921-110721. 
  7. Espinosa E, Bautista R, Larrosa R, Plata O. Advancements in long-read genome sequencing technologies and algorithms. Genomics 2024;116(3):110842. doi: 10.1016/j.ygeno.2024.110842. 
  8. Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Hum Genomics 2023;17(1):73. doi: 10.1186/s40246-023-00522-3. 
  9. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet 2020;21(10):597-614. doi: 10.1038/s41576-020-0236-x. 
  10. Maestri S, Maturo MG, Cosentino E, Marcolungo L, Iadarola B, Fortunati E, et al. A long-read sequencing approach for direct haplotype phasing in clinical settings. Int J Mol Sci 2020;21(23):9177. doi: 10.3390/ijms21239177. 
  11. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12(5):363-76. doi: 10.1038/nrg2958. 
  12. Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: the longer, the better? Eur J Med Genet 2023;66(12):104871. doi: 10.1016/j.ejmg.2023.104871. 
  13. Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z, Fresard L, et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med 2018;20(1):159-63. doi: 10.1038/gim.2017.86. 
  14. Damian A, Nunez-Moreno G, Jubin C, Tamayo A, de Alba MR, Villaverde C, et al. Long-read genome sequencing identifies cryptic structural variants in congenital aniridia cases. Hum Genomics 2023;17(1):45. doi: 10.1186/s40246-023-00490-8. 
  15. Miao H, Zhou J, Yang Q, Liang F, Wang D, Ma N, et al. Long-read sequencing identified a causal structural variant in an exomenegative case and enabled preimplantation genetic diagnosis. Hereditas 2018;155:32. doi: 10.1186/s41065-018-0069-1. 
  16. Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet 2021;108(8):1436-49. doi: 10.1016/j.ajhg.2021.06.006. 
  17. Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet 2018;19(5):286-98. doi: 10.1038/nrg.2017.115. 
  18. Mizuguchi T, Toyota T, Adachi H, Miyake N, Matsumoto N, Miyatake S. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J Hum Genet 2019;64(3):191-7. doi: 10.1038/s10038-018-0551-7. 
  19. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 2019;51(8):1215-21. doi: 10.1038/s41588-019-0459-y. 
  20. Chenais B. Transposable elements and human diseases: mechanisms and implication in the response to environmental pollutants. Int J Mol Sci 2022;23(5):2551. doi: 10.3390/ijms23052551. 
  21. Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet 2019;20(12):760-72. doi: 10.1038/s41576-019-0165-8. 
  22. Smits N, Faulkner GJ. Nanopore sequencing to identify transposable element insertions and their epigenetic modifications. Methods Mol Biol 2023;2607:151-71. doi: 10.1007/978-1-0716-2883-6_9. 
  23. Zhou W, Emery SB, Flasch DA, Wang Y, Kwan KY, Kidd JM, et al. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 2020;48(3):1146-63. doi: 10.1093/nar/gkz1173. 
  24. Aneichyk T, Hendriks WT, Yadav R, Shin D, Gao D, Vaine CA, et al. Dissecting the Causal Mechanism of X-Linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 2018;172(5):897-909.e21. doi: 10.1016/j.cell.2018.02.011. 
  25. Fernandez-Suarez E, Gonzalez-Del Pozo M, Mendez-Vidal C, Martin-Sanchez M, Mena M, de la Morena-Barrio B, et al. Longread sequencing improves the genetic diagnosis of retinitis pigmentosa by identifying an Alu retrotransposon insertion in the EYS gene. Mob DNA 2024;15(1):9. doi: 10.1186/s13100-024-00320-1. 
  26. Ergin S, Kherad N, Alagoz M. RNA sequencing and its applications in cancer and rare diseases. Mol Biol Rep 2022;49(3):2325-33. doi: 10.1007/s11033-021-06963-0. 
  27. Stergachis AB, Blue EE, Gillentine MA, Wang LK, Schwarze U, Cortes AS, et al. Full-length isoform sequencing for resolving the molecular basis of charcot-Marie-Tooth 2A. Neurol Genet 2023;9(5):e200090. doi: 10.1212/NXG.0000000000200090.