참고문헌
- Ferreira CR. The burden of rare diseases. Am J Med Genet A 2019;179(6):885-92. doi: 10.1002/ajmg.a.61124.
- Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28(2):165-73. doi: 10.1038/s41431-019-0508-0.
- Lim SS, Lee W, Kim YK, Kim J, Park JH, Park BR, et al. The cumulative incidence and trends of rare diseases in South Korea: a nationwide study of the administrative data from the National Health Insurance Service database from 2011-2015. Orphanet J Rare Dis 2019;14(1):49. doi: 10.1186/s13023-019-1032-6.
- van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of nextgeneration sequencing technology. Trends Genet 2014;30(9):418-26. doi: 10.1016/j.tig.2014.07.001.
- Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, et al. The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 2015;97(2):199-215. doi: 10.1016/j.ajhg.2015.06.009.
- Sullivan JA, Schoch K, Spillmann RC, Shashi V. Exome/Genome sequencing in undiagnosed syndromes. Annu Rev Med 2023;74:489-502. doi: 10.1146/annurev-med-042921-110721.
- Espinosa E, Bautista R, Larrosa R, Plata O. Advancements in long-read genome sequencing technologies and algorithms. Genomics 2024;116(3):110842. doi: 10.1016/j.ygeno.2024.110842.
- Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Hum Genomics 2023;17(1):73. doi: 10.1186/s40246-023-00522-3.
- Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet 2020;21(10):597-614. doi: 10.1038/s41576-020-0236-x.
- Maestri S, Maturo MG, Cosentino E, Marcolungo L, Iadarola B, Fortunati E, et al. A long-read sequencing approach for direct haplotype phasing in clinical settings. Int J Mol Sci 2020;21(23):9177. doi: 10.3390/ijms21239177.
- Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12(5):363-76. doi: 10.1038/nrg2958.
- Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: the longer, the better? Eur J Med Genet 2023;66(12):104871. doi: 10.1016/j.ejmg.2023.104871.
- Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z, Fresard L, et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med 2018;20(1):159-63. doi: 10.1038/gim.2017.86.
- Damian A, Nunez-Moreno G, Jubin C, Tamayo A, de Alba MR, Villaverde C, et al. Long-read genome sequencing identifies cryptic structural variants in congenital aniridia cases. Hum Genomics 2023;17(1):45. doi: 10.1186/s40246-023-00490-8.
- Miao H, Zhou J, Yang Q, Liang F, Wang D, Ma N, et al. Long-read sequencing identified a causal structural variant in an exomenegative case and enabled preimplantation genetic diagnosis. Hereditas 2018;155:32. doi: 10.1186/s41065-018-0069-1.
- Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet 2021;108(8):1436-49. doi: 10.1016/j.ajhg.2021.06.006.
- Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet 2018;19(5):286-98. doi: 10.1038/nrg.2017.115.
- Mizuguchi T, Toyota T, Adachi H, Miyake N, Matsumoto N, Miyatake S. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J Hum Genet 2019;64(3):191-7. doi: 10.1038/s10038-018-0551-7.
- Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 2019;51(8):1215-21. doi: 10.1038/s41588-019-0459-y.
- Chenais B. Transposable elements and human diseases: mechanisms and implication in the response to environmental pollutants. Int J Mol Sci 2022;23(5):2551. doi: 10.3390/ijms23052551.
- Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet 2019;20(12):760-72. doi: 10.1038/s41576-019-0165-8.
- Smits N, Faulkner GJ. Nanopore sequencing to identify transposable element insertions and their epigenetic modifications. Methods Mol Biol 2023;2607:151-71. doi: 10.1007/978-1-0716-2883-6_9.
- Zhou W, Emery SB, Flasch DA, Wang Y, Kwan KY, Kidd JM, et al. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 2020;48(3):1146-63. doi: 10.1093/nar/gkz1173.
- Aneichyk T, Hendriks WT, Yadav R, Shin D, Gao D, Vaine CA, et al. Dissecting the Causal Mechanism of X-Linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 2018;172(5):897-909.e21. doi: 10.1016/j.cell.2018.02.011.
- Fernandez-Suarez E, Gonzalez-Del Pozo M, Mendez-Vidal C, Martin-Sanchez M, Mena M, de la Morena-Barrio B, et al. Longread sequencing improves the genetic diagnosis of retinitis pigmentosa by identifying an Alu retrotransposon insertion in the EYS gene. Mob DNA 2024;15(1):9. doi: 10.1186/s13100-024-00320-1.
- Ergin S, Kherad N, Alagoz M. RNA sequencing and its applications in cancer and rare diseases. Mol Biol Rep 2022;49(3):2325-33. doi: 10.1007/s11033-021-06963-0.
- Stergachis AB, Blue EE, Gillentine MA, Wang LK, Schwarze U, Cortes AS, et al. Full-length isoform sequencing for resolving the molecular basis of charcot-Marie-Tooth 2A. Neurol Genet 2023;9(5):e200090. doi: 10.1212/NXG.0000000000200090.