DOI QR코드

DOI QR Code

Clinical Application of Chromosomal Microarray for Hematologic Malignancies

  • Chang Ahn Seol (GC Genome)
  • Received : 2024.10.02
  • Accepted : 2024.10.23
  • Published : 2024.10.31

Abstract

Chromosomal microarray (CMA) can detect genome-wide small copy number abnormalities (CNAs) and copy-neutral loss of heterozygosity (CN-LOH) better than conventional karyotyping and fluorescence in situ hybridization (FISH) for hematologic malignancies. Apart from the limitations in detecting balanced chromosomal rearrangements and low-level malignant clones, CMA has clinical utility in detecting significant recurrent and novel variants with diagnostic, prognostic, and therapeutic evidence. It can successfully complement conventional cytogenetic tests for several hematological malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM). An increase in CMA testing for hematologic malignancies is expected to identify novel markers of clinical significance.

Keywords

References

  1. Balciuniene J, Ning Y, Lazarus HM, Aikawa V, Sherpa S, Zhang Y, et al. Cancer cytogenetics in a genomics world: wedding the old with the new. Blood Rev 2024;66:101209. doi: 10.1016/j.blre.2024.101209.
  2. Zneimer SM, Cytogenetic abnormalities. 1st ed. ChiChester, UK: John Wiley & Sons, 2014:3.
  3. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86(5):749-64. doi: 10.1016/j.ajhg.2010.04.006.
  4. Del Gaudio D, Shinawi M, Astbury C, Tayeh MK, Deak KL, Raca G; ACMG Laboratory Quality Assurance Committee. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22(7):1133-41. doi: 10.1038/s41436-020-0782-9.
  5. Ho CC, Naresh K, Liu Y, Wu Y, Gopal AK, Eckel AM. Assessment for 11q and other chromosomal aberrations in large B-cell/highgrade B cell lymphomas of germinal center phenotype lacking BCL2 expression. Cancer Genet 2024;284-285:30-3. doi: 10.1016/j.cancergen.2024.03.001.
  6. Peterson JF, Aggarwal N, Smith CA, Gollin SM, Surti U, Rajkovic A, et al. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: how much can we improve cytogenetic testing? Oncotarget 2015;6(22):18845-62. doi: 10.18632/oncotarget.4586.
  7. Zahir FR, Marra MA. Use of Affymetrix arrays in the diagnosis of gene copy-number variation. Curr Protoc Hum Genet 2015;85:8.13.1-8.13.13. doi: 10.1002/0471142905.hg0813s85.
  8. Szuhai K. Array-CGH and SNP-Arrays, the new Karyotype. In: Jordan B, ed. Microarrays in diagnostics and biomarker development: current and future applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012:39-52.
  9. Shi J, Li P. An integrative segmentation method for detecting germline copy number variations in SNP arrays. Genet Epidemiol 2012;36(4):373-83. doi: 10.1002/gepi.21631.
  10. Peterson JF, Van Dyke DL, Hoppman NL, Kearney HM, Sukov WR, Greipp PT, et al. The utilization of chromosomal microarray technologies for hematologic neoplasms: an ACLPS critical Review. Am J Clin Pathol 2018;150(5):375-84. doi: 10.1093/ajcp/aqy076.
  11. Mitrakos A, Kattamis A, Katsibardi K, Papadhimitriou S, KitsiouTzeli S, Kanavakis E, et al. High resolution Chromosomal Microarray Analysis (CMA) enhances the genetic profile of pediatric Bcell Acute Lymphoblastic Leukemia patients. Leuk Res 2019;83: 106177. doi: 10.1016/j.leukres.2019.106177.
  12. Mikhail FM, Biegel JA, Cooley LD, Dubuc AM, Hirsch B, Horner VL, et al. Technical laboratory standards for interpretation and reporting of acquired copy-number abnormalities and copyneutral loss of heterozygosity in neoplastic disorders: a joint consensus recommendation from the American College of Medical Genetics and Genomics (ACMG) and the Cancer Genomics Consortium (CGC). Genet Med 2019;21(9):1903-16. doi: 10.1038/s41436-019-0545-7.
  13. Shao L, Akkari Y, Cooley LD, Miller DT, Seifert BA, Wolff DJ, et al. Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021;23(10):1818-29. doi: 10.1038/s41436-021-01214-w.
  14. International Standing Committee on Human Cytogenomic Nomenclature, et al. ISCN 2020: an international system for human cytogenomic nomenclature (2020). Basel, Hartford: Karger, 2020: 163.
  15. Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019;33(8):1851-67. doi: 10.1038/s41375-019-0378-z.
  16. Wan Mohamad Zamri WN, Mohd Yunus N, Abdul Aziz AA, Zulkipli NN, Sulong S. Perspectives on the application of Cytogenomic approaches in Chronic Lymphocytic Leukaemia. Diagnostics (Basel) 2023;13(5):964. doi: 10.3390/diagnostics13050964.
  17. Hess B, Kalmuk J, Znoyko I, Schandl CA, Wagner-Johnston N, Mazzoni S, et al. Clinical utility of chromosomal microarray in establishing clonality and high risk features in patients with Richter transformation. Cancer Genet 2022;260-261:18-22. doi: 10.1016/j.cancergen.2021.10.003.
  18. Lejman M, Zawitkowska J, Styka B, Babicz M, Winnicka D, Zaucha-Prazmo A, et al. Microarray testing as an efficient tool to redefine hyperdiploid paediatric B-cell precursor acute lymphoblastic leukaemia patients. Leuk Res 2019;83:106163. doi: 10.1016/j.leukres.2019.05.013.
  19. Stevens-Kroef MJ, Olde Weghuis D, ElIdrissi-Zaynoun N, van der Reijden B, Cremers EMP, Alhan C, et al. Genomic array as compared to karyotyping in myelodysplastic syndromes in a prospective clinical trial. Genes Chromosomes Cancer 2017; 56(7):524-34. doi: 10.1002/gcc.22455.
  20. Mukherjee S, Sathanoori M, Ma Z, Andreatta M, Lennon PA, Wheeler SR, et al. Addition of chromosomal microarray and next generation sequencing to FISH and classical cytogenetics enhances genomic profiling of myeloid malignancies. Cancer Genet 2017;216-217:128-41. doi: 10.1016/j.cancergen.2017.07.010.
  21. Berry NK, Dixon-McIver A, Scott RJ, Rowlings P, Enjeti AK. Detection of complex genomic signatures associated with risk in plasma cell disorders. Cancer Genet 2017;218-219:1-9. doi: 10.1016/j.cancergen.2017.08.004.
  22. Gonzales PR, Andersen EF, Brown TR, Horner VL, Horwitz J, Rehder CW, et al. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24(2):255-61. doi: 10.1016/j.gim.2021.10.004.