DOI QR코드

DOI QR Code

Neonatal Diabetes Mellitus: A Focused Review on Beta Cell Function Abnormalities

  • Jung-Eun Moon (Department of Pediatrics, School of Medicine, Kyungpook National University Chilgok Hospital)
  • 투고 : 2024.10.15
  • 심사 : 2024.10.21
  • 발행 : 2024.10.31

초록

Neonatal diabetes mellitus, or congenital diabetes mellitus, is a rare genetic disorder caused by abnormal β cell function and other causes. The symptoms of hyperglycemia that occur in neonatal diabetes. The symptoms of hyperglycemia that occur in neonatal diabetes may be transient or persistent. The most frequent genetic cause of neonatal diabetes characterized by abnormal β cell function is abnormalities at the 6q24 locus. Another possible cause is mutations in the ABCC8 or KCNJ11 genes, which code for potassium channels in pancreatic β cells. This underscores the importance of rapid genetic diagnosis following neonatal diabetes diagnosis and highlights the critical timing of sulfonylurea use.

키워드

참고문헌

  1. Iafusco D, Massa O, Pasquino B, Colombo C, Iughetti L, Bizzarri C, et al. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol. 2012;49:405-8. doi: 10.1007/s00592-011-0331-8.
  2. Kanakatti Shankar R, Pihoker C, Dolan LM, Standiford D, Badaru A, Dabelea D, et al. Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for diabetes in Youth Study. Pediatr Diabetes. 2013;14:174-80. doi: 10.1111/pedi.12003.
  3. Busiah K, Drunat S, Vaivre-Douret L, Bonnefond A, Simon A, Flechtner I, et al. Neuropsychological dysfunction and neurodevelopmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study. Lancet Diabetes Endocrinol. 2013;1:199-207. doi: 10.1016/S2213-8587(13)70059-7.
  4. Beltrand J, Busiah K, Vaivre-Douret L, Fauret AL, Berdugo M, Cave H, et al. Neonatal diabetes mellitus. Front Pediatr. 2020;8:540718. 
  5. Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355:456-66. doi: 10.1056/NEJMoa055068.
  6. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA. 2007;104:15040-4. doi: 10.1073/pnas.0707291104.
  7. Bonnefond A, Lomberk G, Buttar N, Busiah K, Vaillant E, Lobbens S, et al. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J Biol Chem. 2011;286:28414-24. doi: 10.1074/jbc.M110.215822.
  8. Amiel SA, Caprio S, Sherwin RS, Plewe G, Haymond MW, Tamborlane WV. Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab. 1991; 72:277-82. doi: 10.1210/jcem-72-2-277.
  9. Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC, et al. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med. 2008; 25:277-81. doi: 10.1111/j.1464-5491.2007.02373.x.
  10. Johnson MB, De Franco E, Greeley SAW, Letourneau LR, Gillespie KM; International DS-PNDM Consortium, et al. Trisomy 21 is a cause of permanent neonatal diabetes that is autoimmune but not HLA associated. Diabetes. 2019;68:1528-35. doi: 10.2337/db19-0045.
  11. Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njolstad PR, Mlynarski W, et al. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19: 47-63. doi: 10.1111/pedi.12772.
  12. Bowman P, Sulen A, Barbetti F, Beltrand J, Svalastoga P, Codner E, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol. 2018;6:637-46. doi: 10.1016/S2213-8587(18)30106-2.
  13. Temple IK, Gardner RJ, Robinson DO, Kibirige MS, Ferguson AW, Baum JD, et al. Further evidence for an imprinted gene for neonatal diabetes localized to chromosome 6q22-q23. Hum Mol Genet. 1996;5:1117-21. doi: 10.1093/hmg/5.8.1117.
  14. Cave H, Polak M, Drunat S, Denamur E, Czernichow P. Refinement of the 6q chromosomal region implicated in transient neonatal diabetes. Diabetes. 2000;49:108-13. doi: 10.2337/diabetes.49.1.108.
  15. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R, Shield JP, et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000;9:589-96. doi: 10.1093/hmg/9.4.589.
  16. Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 2013;56:758-62. doi: 10.1007/s00125-013-2832-1.
  17. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, et al. Association and stoichiometry of KATP channel subunits. Neuron. 1997;18:827-38. doi: 10.1016/S0896-6273(00)80321-9.
  18. Ashcroft FM, Gribble FM. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 1998;21:288-94. doi: 10.1016/S0166-2236(98)01225-9.
  19. Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, et al. Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet. 2005;14:925-34. doi: 10.1093/hmg/ddi086.
  20. Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC, et al. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med. 2008; 25:277-81. doi: 10.1111/j.1464-5491.2007.02373.x.
  21. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA. 2007;104:15040-4. doi: 10.1073/pnas.0707291104.
  22. Polak M, Dechaume A, Cave H, Nimri R, Crosnier H, Sulmont V, et al. Heterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: a report from the French ND study group. Diabetes. 2008;57:1115-9. doi: 10.2337/db07-1358.
  23. Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes. 2003;52:409-16. doi: 10.2337/diabetes.52.2.409.
  24. Colombo C, Porzio O, Liu M, Massa O, Vasta M, Salardi S, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest. 2008;118:2148-56. doi: 10.1172/JCI33777.
  25. Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, et al. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention.
  26. Balboa D, Saarimaki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife. 2018;7:e38519. doi: 10.7554/eLife.38519.
  27. Bonnefond A, Lomberk G, Buttar N, Busiah K, Vaillant E, Lobbens S, et al. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J Biol Chem. 2011;286:28414-24. doi: 10.1074/jbc.M110.215822.
  28. Stoffel M, Froguel P, Takeda J, Zouali H, Vionnet N, Nishi S, et al. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci USA. 1992;89:7698. doi: 10.1073/pnas.89.16.7698.
  29. Njolstad PR, Sovik O, Cuesta-Munoz A, Bjorkhaug L, Massa O, Barbetti F, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001;344:1588-92. doi: 10.1056/NEJM200105243.
  30. Rabbone I, Barbetti F, Marigliano M, Bonfanti R, Piccinno E, Ortolani F, et al. Successful treatment of young infants presenting neonatal diabetes mellitus with continuous subcutaneous insulin infusion before genetic diagnosis. Acta Diabetol. 2016;53:559-65. doi: 10.1007/s00592-015-0828-7.
  31. Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355:467-77. doi: 10.1056/NEJMoa061759.
  32. Carmody D, Bell CD, Hwang JL, Dickens JT, Sima DI, Felipe DL, et al. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons. J Clin Endocrinol Metab. 2014;99:2709-14. doi: 10.1210/jc.2014-2494.
  33. Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC, et al. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med. 2008; 25:277-81. doi: 10.1111/j.1464-5491.2007.02373.x.
  34. Slingerland AS, Nuboer R, Hadders-Algra M, Hattersley AT, Bruining GJ. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy, and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia. 2006;49: 2559-63. doi: 10.1007/s00125-006-0407-0.
  35. Garcin L, Kariyawasam D, Busiah K, Fauret-Amsellem AL, Le Bourgeois F, Vaivre-Douret L, et al. Successful off-label sulfonylurea treatment of neonatal diabetes mellitus due to chromosome 6 abnormalities. Pediatr Diabetes. 2018;19:663-9. doi: 10.1111/pedi.12635.