과제정보
본 연구는 2024년도 농촌진흥청 국립식량과학원 전문연구원 과정 지원사업(RS-2022-RD010389)에 의해 이루어진 것임.
참고문헌
- Alzubaidi, L., J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8 : 53. https://doi.org/10.1186/s40537-021-00444-8
- Bak, H. J., D. W. Kwon, W. G. Sang, H. Y. Ban, S. Y. Chang, J. K. Beak, Y. H. Lee, W. J. Im, M. C. Seo and J. I. Cho. 2023. Deep learning approaches for accurate weed Area assessment in maize fields. Korean Journal of Agricultural and Forest Meteorology 25(1) : 17-27.
- Ban, H. Y., J. K. Beak, W. G. Sang, J. H. Kim, and M. C. Seo. 2021. Estimation of the lodging area in rice using deep learning. Korean J. Crop Sci. 66(2) : 105-111.
- Bouguettaya, A., H. Zarzour, A. Kechida, and A. M. Taberkit. 2022. Deep learning techniques to classify agricultural crops through UAVimagery: a review. Neural Computing and Applications 34 : 9511-9536. https://doi.org/10.1007/s00521-022-07104-9
- Dobosz, B., D. Gozdowski, J. Koronczok, J. Zukovskis, and E. Wojcik-Gront. 2023. Evaluation of maize crop damage using UAV-Based RGB and multispectral imagery. Agriculture 13(8) : 1627. https://doi.org/10.3390/agriculture13081627
- Hama, A., K. Tanaka, B. Chen, and A. Kondoh. 2021. Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring. Journal of Agricultural Meteorology 77(3) : 200-209. https://doi.org/10.2480/agrmet.D-20-00047
- Hayashi, S., A. Kamoshita, and J. Yamagishi. 2006. Effect of planting density on grain yield and water productivity of rice grown in flooded and non-flooded fields in Japan. Journal of Plant Prod. Sci. 9(3) : 298-311.
- Hwang, W. H., H. S. Lee, S. Y. Yang, and C. G. Lee. 2023. Change in yield characteristics by transplanting density in major cultivated rice. Korean J. Crop Sci. 68(1) : 1-7
- Kanetaka, M., A. Takahashi, and S. Azuma. 2004. Transplanting culture by dense sowing and sparse planting of Koshihikari. The Hor. Crop Sci. 40 : 11-14.
- Kazemi, F. and E. Parmehr. 2022. Evaluation of rgb vegetation indices derived from uav images for rice crop growth monitoring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-4/W1-2022 : 385-390. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-385-2023
- Kim, G. Y., S. B. Lee, J. S. Lee, E. J. Choi, and J. H. Ryu. 2012. Mitigation of greenhouse gases by water management of SRI (System of Rice Intensification) in rice paddy fields. Korean J. Soil Sci. 45(6) : 1173-1178.
- Lee, Y. H., H. J. Bak, J. W. Kim, B. K. Kim, H. S. Jang, D. W. Kim, J. T. Youn, and T. Y. Hwang. 2022. Evaluation of leaf area, canopy coverage light interception, and exposure setting in wheat using RGB color vegetation indices. Journal of Agriculture & Life Science 56(6) : 1-13.
- Li, B., X. Xu, J. W. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods 15 : 15. https://doi.org/10.1186/s13007-019-0399-7
- Norman, U. 2008. The System of Rice Intensification (SRI) as a system of agricultural innovation. Jurnal Tanah dan Lingkungan 10(1) : 27-40
- Redmon, J., S. Divvala, R. Girshick and A. Farhadi. 2016. You only look once: Unified, Real-Time Object Detection. arXiv:1506.02640v5.
- Shen, J., Q. Wang, M. Zhao, J. Hu, J. Wang, M. Shu, Y. Liu, W. Guo, H. Qiao, Q. Niu and J. Yue. 2024. Mapping maize planting densities using unmanned aerial vehicles, multispectral remote sensing, and deep learning technology. Drones 8, 140. https://doi.org/10.3390/drones8040140
- Shorten, C. and T. M. Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal of Big Data. 6:60 https://doi.org/10.1186/s40537-019-0197-0
- Ultralytics. 2020. YOLOv5: A family of object detection architectures and models. Ultralytics GitHub Repository. Available at: https://github.com/ultralytics/yolov5
- Yang, S. Y., W. H, Hwang, J. H. Jeong, H. S. Lee, and C. G. Lee. 2021. Changes in growth and yield of different rice varieties under different planting densities in low-density transplanting cultivation. Korean J. Crop Sci. 66(4) : 279-288.