DOI QR코드

DOI QR Code

Optimal Design of IPMSM Rotor Notch Shape for Efficiency and Torque Characteristics Improvement

효율 및 토크특성 개선을 위한 IPMSM 회전자 노치 형상 최적 설계

  • Hyeon-Jun Kim ;
  • Soo-Whang Baek (Dept. Human Intelligence and Robot Eng., Sangmyung University)
  • 김현준 (상명대학교 일반대학원 전자정보시스템공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • Received : 2024.08.01
  • Accepted : 2024.10.12
  • Published : 2024.10.31

Abstract

This paper optimally designs the shape of the rotor notch to improve the efficiency and reduce torque ripple of a 30kW EV traction IPMSM. To improve torque ripple, notches were applied to the IPMSM rotor and the optimal design was performed. Elliptical, square, and triangular notches were applied to the IPMSM rotor and sample points of the IPMSM were generated within the specified design range using OLHD. Fifty sample points were generated for each of the three types of notches, and five metamodels were generated. The model with the lowest RMSE among the generated metamodels was selected, and parameter sensitivity analysis and optimal design were performed using this. The results of the optimal design were verified by FEA and compared with the torque characteristics of the existing IPMSM. As a result, the torque ripple was reduced by 62.5% to 1.376Nm compared to the initial model, the peak-to-peak cogging torque was reduced by 34% to 0.547Nm, and the efficiency was 96.742%.

본 논문은 30kW급 EV 견인용 IPMSM의 효율 개선과 토크 리플의 저감을 위해 회전자 노치의 형상을 최적 설계하였다. 토크 리플을 개선하기 위해 IPMSM의 회전자에 노치를 적용하고 최적 설계를 수행하였다. IPMSM의 회전자에 타원형, 사각형, 삼각형의 노치를 적용하고 OLHD를 사용해 지정한 설계 범위 내에서 IPMSM의 샘플 포인트를 생성하였다. 3가지 방식의 노치마다 샘플 포인트는 50개를 생성하였고, 5가지의 메타모델을 생성하였다. 생성한 메타모델 중 RMSE가 가장 낮은 모델을 선정하고, 이를 이용해 매개변수 민감도 분석 및 최적 설계를 수행한다. 최적 설계의 결과를 FEA로 검증하고 기존 IPMSM의 토크 특성과 비교한다. 결과적으로, 초기 모델 대비 토크 리플은 62.5% 감소한 1.376Nm, 코깅 토크의 peak to peak은 34% 감소한 0.547Nm를 나타냈으며, 효율은 96.742%를 나타냈다.

Keywords

Acknowledgement

본 연구는 2023학년도 상명대학교 교내연구비를 지원받아 수행하였음.(2023-A000-0162)

References

  1. M. L. De Klerk and A. K. Saha, "A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications," IEEE Access, vol. 9, 2021, pp. 125080-125108. https://doi.org/10.1109/ACCESS.2021.3110736 
  2. J. Sanguesa, V. Torres-Sanz, P. Garrido, Fr. Martinez, and J. Marquez-Barja, "A Review on Electric Vehicles: Technologies and Challenges," Smart Cities, vol. 4, no. 1, 2021, pp. 372-404. https://doi.org/10.3390/smartcities4010022 
  3. S. Thangavel, D. Mohanraj, T. Girijaprasanna, S. Raju, C. Dhanamjayulu, and S. M. Muyeen, "A Comprehensive Review on Electric Vehicle: Battery Management System, Charging Station, Traction Motors," IEEE Access, vol. 11, 2023, pp. 20994-21019. https://doi.org/10.1109/ACCESS.2023.3250221 
  4. Y. Jung, M. Park, K. Kim, J. Chin, J. Hong, and M. Lim, "Design of High-Speed Multilayer IPMSM Using Ferrite PM for EV Traction Considering Mechanical and Electrical Characteristics," IEEE Trans. Industry Applications, vol. 57, no. 1, 2021, pp. 327-339. https://doi.org/10.1109/ACCESS.2023.3250221 
  5. J. Kang and J. Hur, "Fault Mechanism Analysis of Irreversible Demagnetization Due to the Dynamic Eccentricity of IPMSM for EV Traction," IEEE Access, vol. 10, 2022, pp. 64483-64494. https://doi.org/10.1109/ACCESS.2022.3183347 
  6. H. Lee, H. Jeong, and S. Cho, "A Study on Design and Manufacture of Slotless Outer Rotor BLDC Motor for a Vehicle Blower," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 5, 2023, pp. 827-834. https://doi.org/10.13067/JKIECS.2023.18.5.827 
  7. S. Baek, "A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 845-850. https://doi.org/10.13067/JKIECS.2021.16.5.845 
  8. M. Choi, S. Yang, and C. Moon, "Design of Axial Flux Permanent Magnetic Motor Using Soft Magnetic Composite Core," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, 2022, pp. 607-616. https://doi.org/10.13067/JKIECS.2022.17.4.607 
  9. H. Chuan, S. M. Fazeli, Z. Wu, and R. Burke, "Mitigating the Torque Ripple in Electric Traction using Proportional Integral Resonant Controller," IEEE Trans. on Vehicular Technology, vol. 69, no. 10, 2020, pp. 10820-10831. https://doi.org/10.1109/TVT.2020.3013414 
  10. L. Ding, Y. Cheng, T. Zhao, K. Yao, Y. Wang, and S. Cui, "Design and Optimization of an Asymmetric Rotor IPM Motor with High Demagnetization Prevention Capability and Robust Torque Performance," Energies, vol. 16, no. 9, 2023, pp. 3635. https://doi.org/10.3390/en16093635 
  11. S. Khan, A. Pasund, N. Ahmad, S. Ahmed, H. Khan, K. Cheema, and A. Milyani, "Performance Investigation and Cogging Torque Reduction in a Novel Modular Stator PM Flux Reversal Machine," Energies, vol. 15, no. 6, 2022, pp. 2261. https://doi.org/10.3390/en15062261 
  12. S. Ji, Y. Li, H. Ou, and W. Tian, "Design Principles and Calculation Criteria for Skewed Notches in PM Motors," Energies, vol. 16, no. 9, 2023, pp. 3783. https://doi.org/10.3390/en16093783 
  13. J. Hao, S. Suo, Y. Yang, Y. Wang, W. Wang, and X. Chen, "Optimization of Torque Ripples in an Interior Permanent Magnet Synchronous Motor Based on the Orthogonal Experimental Method and MIGA and RBF Neural Networks," IEEE Access, vol. 8, 2020, pp. 27202-27209. https://doi.org/10.1109/ACCESS.2020.2971473 
  14. C. Song, D. Kim, and K. Kim, "Design of a Novel IPMSM Bridge for Torque Ripple Reduction," IEEE Trans. Magnetics, vol. 57, no. 2, 2021, pp. 1-4. https://doi.org/10.1109/TMAG.2020.3016985 
  15. S. Baek and S. Lee, "Design Optimization and Experimental Verification of Permanent Magnet Synchronous Motor Used in Electric Compressors in Electric Vehicles," Applied Sciences, vol. 10, no. 9, 2020, pp. 3235. https://doi.org/10.3390/app10093235