DOI QR코드

DOI QR Code

3D Printer Defect Detection System using Transmissive Photo Sensor

투과형 포토센서를 이용한 3D 프린터 탈조 감지 시스템

  • Jeong-Bin Choi ;
  • Do-Young Kim ;
  • Soo-Whang Baek (Dept. Human Intelligence and Robot Eng. Sangmyung University)
  • 최정빈 (상명대학교 휴먼지능로봇공학과) ;
  • 김도영 (상명대학교 휴먼지능로봇공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • Received : 2024.08.01
  • Accepted : 2024.10.12
  • Published : 2024.10.31

Abstract

This paper propose a method for detecting defects in 3D printer outputs using a transmissive photo sensor. The transmissive photo sensor measures the transmittance of the material and is used to detect defects that may occur during the printing process. To this end, the transmissive photo sensor is integrated into the 3D printer platform, and an algorithm that processes the data obtained from the sensor in real time to judge the presence of defects was developed. The results of the experiment confirmed that the propoesd system can quickly detect a variety of defects that occur during the manufacturing process. Not only can these results play a crucial role in quality control and productivity enhancement of 3D printers, but they also have potential for application in the manufacturing industry. In the future, it is expected that the defect detection system based on the proposed method will improve the stability and efficiency fo the manufacturing process.

본 논문에서는 투과형 포토센서를 이용하여 3D 프린터 출력물의 탈조를 감지하는 방법을 제안하였다. 투과형 포토센서는 재료의 투과율을 측정하여 출력과정 중에 발생할 수 있는 탈조를 감지하기 위한 목적으로 사용된다. 이를 위해 투과형 포토센서를 3D 프린터의 플랫폼에 통합하고, 센서에서 얻은 데이터를 실시간으로 처리하여 탈조 여부를 판단하는 알고리즘을 개발하였다. 실험 결과, 제안한 시스템이 제조 과정 중에 발생하는 다양한 탈조를 신속하게 감지할 수 있음을 확인하였다. 이러한 결과는 3D 프린터의 품질 관리 및 생산성 향상을 위한 중요한 역할을 할 수 있을 뿐만 아니라, 제조업 분야에서의 적용 가능성을 가지고 있다. 향후, 제안한 방법을 기반으로 한 탈조 감지 시스템은 제조 과정의 안정성과 효율성을 향상할 수 있을 것으로 기대된다.

Keywords

References

  1. E. MacDonald, and R. Wicker, "Multiprocess 3D printing for increasing component functionality," Science, vol. 353, no. 6307, 2016, pp. 2093. https://doi.org/10.1126/science.aaf2093
  2. S. Valvez, P. Reis, and J. Ferreira, "Effect of annealing treatment on mechanical properties of 3D-Printed composites," J. of Materials Research and Technology, vol. 23, 2023, pp. 2101. https://doi.org/10.1016/j.jmrt.2023.01.097
  3. J.- Park, H. Kim, S. Baek, M. Kim, and S. Lee, "A Design of Vehicle for Mobile 3D Printer," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 1, Feb. 2023, pp. 177-184.  https://doi.org/10.13067/JKIECS.2023.18.1.177
  4. H. Kim, J. Kim, and S. Baek, "Design and implementation of motor-based rehabilitation wearable robot hand system using 3D printing," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 941-946. https://doi.org/10.13067/JKIECS.2021.16.5.941
  5. J. Seong, and H. Choi, "A Wearable Glove System for Rehabilitation of Finger Injured Patients," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 2, Apr. 2023, pp. 379-386. https://doi.org/10.13067/JKIECS.2023.18.2.379
  6. A. Mohammad, W. Mohammed, D. Suker, T. Alghamdi, R. Sabbagh, A. Mohammed, and B. Feras, "Experimental Characterization of the Influence of Nozzle Temperature in FDM 3D Printed Pure PLA and Advanced PLA+," American J. of Mechanical Engineering, vol. 7, no. 2, 2019, pp. 45-60. https://doi.org/10.12691/ajme-7-2-1
  7. T. Wang, J. Xi, and Y. Jin, "A model research for prototype warp deformation in the FDM process," The Int. J. of Advanced Manufacturing Technology, vol. 33, 2007, pp. 1087-1096. https://doi.org/10.1007/s00170-006-0556-9
  8. A. Samy, A. Golbang, E. Harkin-Jones, E. Archer, and A. McIlhagger, "Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: Effect of printing conditions," CIRP J. of Manufacturing Science and Technology, vol. 33, 2021, pp 443-453. https://doi.org/10.1016/j.cirpj.2021.04.012
  9. A. Patti, A. Stefano, C. Gianluca, and A. Domenico, "Predicting the Printability of Poly(Lactide) Acid Filaments in Fused Deposition Modeling (FDM) Technology: Rheological Measurements and Experimental Evidence," ChemEngineering, vol. 7, no. 1, 2023, pp. 2023. https://doi.org/10.3390/chemengineering7010001
  10. J. Ramian, J. Ramian, and D. Dziob, "Thermal Deformations of Thermoplast during 3D Printing: Warping in the Case of ABS," Materials, vol. 14, no. 22, 2021, pp. 7070. https://doi.org/10.3390/ma14227070
  11. D. Syrlybayev, B. Zharylkassyn, A. Seisekulova, A. Perveen, and D. Talamona, "Optimization of the Warpage of Fused Deposition Modeling Parts Using Finite Element Method," Polymers, vol. 13, no. 21, 2021, pp. 3849. https://doi.org/10.3390/polym13213849
  12. H. Ramezani Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet, and T. Breteau, "Polymer additive manufacturing of ABS structure: Influence of printing direction on mechanical properties," J. of Manufacturing Processes, vol. 44, 2019, pp. 288-298. https://doi.org/10.1016/j.jmapro.2019.06.015
  13. F. Paredes, C. Herrojo, and F. Martin, "3D-Printed Quasi-Absolute Electromagnetic Encoders for Chipless-RFID and Motion Control Applications," Electronics, vol. 10, no. 10, 2021, pp. 1154. https://doi.org/10.3390/electronics10101154
  14. A. Isiani, L. Weiss, H. Bardaweel, H. Nguyen, and K. Crittenden, "Fault Detection in 3D Printing: A Study on Sensor Positioning and Vibrational Patterns," Sensors, vol. 23, no. 17, 2023, pp. 7524. https://doi.org/10.3390/s23177524
  15. M. Farhan Khan, A. Aftaab, M. Ateeb Siddiqui, M. Saad Alam, Y. Rafat, N. Salik, and I. Al-Saidan, "Real-time defect detection in 3D printing using machine learning," Materials Today: Proceedings, vol. 42, no. 2, 2021, pp. 521-528. https://doi.org/10.1016/j.matpr.2020.10.482
  16. W. Lee, J. Fritsch, A. Maqsood, S. Liu, T. Bourassa, R. Calara, and W. Kim, "Adaptive 3D Printing for In Situ Adjustment of Mechanical Properties," Advanced Intelligent System, vol. 5, 2023, no. 1, 2022, pp. 2200229. https://doi.org/10.1002/aisy.202200229
  17. A. Kantaros, T. Ganetsos, and F. I. T. Petrescu, "Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage," Applied Sciences. vol. 13, no. 8, 2023, pp. 4777. https://doi.org/10.3390/app13084777