DOI QR코드

DOI QR Code

Implementation of a Smart Coffee Machine using IoT Technology

IoT 기술을 활용한 스마트 커피머신의 구현

  • Hyo-Chan Kim ;
  • Ju-Hyun Kim ;
  • Tae-Kyu Ji ;
  • Sang-Kyun Choi ;
  • Soo-Whang Baek (Dept. Human Intelligence and Robot Eng., Sangmyung University)
  • 김효찬 (상명대학교 휴먼지능로봇공학과) ;
  • 김주현 (상명대학교 휴먼지능로봇공학과) ;
  • 지태규 (상명대학교 휴먼지능로봇공학과) ;
  • 최상균 (상명대학교 휴먼지능로봇공학과) ;
  • 백수황 (상명대학교 휴먼지능로봇공학과)
  • Received : 2024.08.01
  • Accepted : 2024.10.12
  • Published : 2024.10.31

Abstract

Recently, various IoT devices are being developed to suit the user's lifestyle in our daily lives. In this paper, a smart coffee machine using IoT technology was implemented through an application and an ESP-01 WiFi module. The implemented smart coffee machine is different from existing coffee machines with alarm functions in that it can manage the desired date and time with an application by combining IoT. The application uses Android Studio to input data and transmits appropriate information to the smart coffee machine. An Arduino-based circuit was configured to control the coffee machine and MP3 module so that coffee is extracted at the desired time and an alarm sound is heard through the speaker. The extracted coffee can be divided into three stages: hot, warm, and lukewarm depending on the temperature. Finally, the suitability of the implemented smart coffee machine was confirmed through an experiment on the change in coffee temperature according to the amount of water and time.

최근 우리 일상 속에서 사용자의 라이프스타일에 맞춰 사용할 수 있도록 다양한 IoT 디바이스들이 개발되고 있다. 본 논문에서는 애플리케이션과 ESP-01 WiFi 모듈을 통해 IoT 기술을 사용하는 스마트 커피머신을 구현하였다. 구현된 스마트 커피머신은 기존 알람기능이 있는 커피머신과 다르게 IoT를 결합해 원하는 날짜와 시간을 애플리케이션으로 관리할 수 있는 차별성을 갖는다. 애플리케이션은 안드로이드 스튜디오를 이용하여 데이터를 입력받고, 스마트 커피머신에 알맞은 정보를 전송할 수 있는 기능을 한다. 아두이노 기반의 회로를 구성하여 커피머신과 MP3 모듈을 제어함으로써 원하는 시간에 커피가 추출되고 스피커를 통해 알림음이 울리도록 설계되었다. 추출된 커피는 온도에 따라 뜨거움, 따뜻함, 미지근함 세 단계로 나누어 구분할 수 있다. 최종적으로 물의 양과 시간에 따른 커피 온도 변화 실험을 통해 구현한 스마트 커피머신의 적합성을 확인하였다.

Keywords

References

  1. C. Jung, S. Lee, and Y. Kim, "Dual Heating Method of Direct Inject Water for Drip-Coffee Machine," The J. of Korean Institute of Information Technology, vol. 17, no. 11, 2019, pp. 37-42. https://doi.org/10.14801/jkiit.2019.17.11.37
  2. M. Song, "History of coffee industry in Korea," Korean Society of Food Science and Technology, vol. 53, no. 4, 2020, pp. 397-409. https://doi.org/10.23093/FSI.2020.53.4.397
  3. J. Ji, and S. Lee, "Analysis of the Demand for Imported Coffee Bean in Korea," Korean J. of Agricultural Management and Policy, vol. 46, no. 1, 2019, pp. 1-16. https://doi.org/10.30805/KJAMP.2019.46.1.1
  4. D. Hong, J. Lim, J. Yu, S. Beak, and J. Kim, "Study on a Smart Cane for the Visually Impaired utilizing ESP32-CAM for Enhanced Safety," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, 2023, pp. 1379-1386. https://doi.org/10.13067/JKIECS.2023.18.6.1379
  5. J. Lee, H. Lee, and W. Choi, "A study on iNterface and Interaction using Chatgpt System in Virtual Reality Space," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, 2023, pp. 1285-1290. https://doi.org/10.13067/JKIECS.2023.18.6.1285
  6. H. Jeon, Y. Na, Y. Youn, K. Kim, H. Ahn, and J. Kim, "Study on Development for Smart Door Lock and App. using Arduino and Infrared Sensor," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, 2022, pp. 1199-1206. https://doi.org/10.13067/JKIECS.2022.17.6.1199
  7. K. Yong, W. Choe, J. Woo, S. Piao, and J. Lee, "The Impact of Coffee Shop Visits and Coffee Consumption Factors on the Preference for Specialty Coffee," J. of the Korea Academia-Industrial cooperation Society, vol. 25, no. 4, 2024, pp. 290-298. https://doi.org/10.5762/KAIS.2024.25.4.290
  8. J. Oh, and H. Park, "A Study on the Changes to Residential Space Perception and Use After COVID-19 Pandemic according to the Housing Characteristics of Young Single Person Households," J. of the Korean Institute of Interior Design, vol. 32, no. 1, 2023, pp. 135-142. https://doi.org/10.14774/JKIID.2023.32.1.135
  9. A. Sujiwa, and I. Santoso, "Automatic Coffee Maker Machine Based on Internet of Things (IoT)," BEST J. of Applied Electrical Science & Technology, vol. 4, no. 1, 2022, pp. 1-5. https://doi.org/10.36456/best.vol4.no01.5343
  10. J. Choi, S. Lee, K. Kang, and H. Suh, "Lightweight Machine Learning Method for Real-Time Espresso Analysis," Electronics, vol. 13, no. 4, 2024, pp. 800. https://doi.org/10.3390/electronics13040800
  11. H. Xu, W. Wei, C. Wu, and Y. Pan, "Positive Experience Design Strategies for IoT Products to Improve User Sustainable Well-Being," Sustainability, vol. 15, no. 17, 2023, pp. 13071. https://doi.org/10.3390/su151713071