DOI QR코드

DOI QR Code

WLAN 및 Sub-6GHz 대역을 위한 다중대역 안테나 설계 및 제작

Design and Fabrication of Multi-Band Antenna for WLAN and Sub-6GHz Band

  • 윤중한 (신라대학교 전기전자공학과)
  • Joong-Han Yoon (Dept. of Electrical and Electronic Engineering, Silla University)
  • 투고 : 2024.08.19
  • 심사 : 2024.10.12
  • 발행 : 2024.10.31

초록

본 논문에서는 Sub-6G 대역을 포함한 WLAN 시스템에 적용가능한 멀티밴드 안테나를 제안하였다. 제안된 안테나는 4개의 경로를 갖는 스트립 선로와 임피던스 매칭을 위해 슬롯을 갖는 부분 접지면으로 구성되어 있다. 제안된 안테나는 48.0 mm(W)×50.0 mm(L)의 크기와 두께(h) 1.0 mm, 그리고 비유전율이 4.4인 FR-4 기판 위에 26.0 mm(W2)×42.0 mm(L1+L2+4.0 mm+L8+L9)의 크기로 설계되었다. 제작 및 측정 결과로부터, -10dB 기준으로 900 MHz 대역에서는 115 MHz (0.825~0.940 GHz), 2.4 GHz 대역에서는 210 MHz (2.29~2.50 GHz), 3.5 GHz 대역에서는 270 MHz (3.45~3.72 GHz), 그리고 5.0 GHz 대역에서는 930 MHz (4.95~5.88 GHz)의 대역폭을 얻었다. 또한 요구되는 주파수 삼중대역에서 이득과 방사패턴 특성을 측정하였다.

In this paper, we propose mult-band antenna included Sub-6 GHz band for WLAN system. The proposed antenna has the fourth strip line and slot in the partial ground plane to obtain impedance matching. The total substrate size is 48.0 mm (W)×50.0 mm (L), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 26.0 mm (W2)×42.0 mm (L1+L2+4.0(L1+L2+4.0 mm+L8+L9) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 115 MHz (0.825 to 0.940 GHz) for 900 MHz band, 210.0 MHz (2.29 to 2.50 GHz) for 2.4 GHz band, 270.0 MHz (3.45 to 3.72 GHz) for 3.5 GHz band, and 930.0 MHz (4.95 to 5.88 GHz) for 5.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

키워드

참고문헌

  1. B. Jeong, S. Jang, S. Yoon, and D. Kim, "Development direction of WLAN technology and standardization trend of IEEE 802.11ax," Mag. of Information and Telecommunication, vol. 32, no. 3, 2015, pp. 69-76. 
  2. J. Son, U. An, J. Ko, and K. Kwak, "Recent tread to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, 2016, pp. 3-9. 
  3. S. Park, "Technology trend of 5 GHz mobile communication," Weekly ICT Trends, vol. 1844, 2018, pp. 2-11. 
  4. H. Lee, "Current situation of 5G mobile communication industry 2023 and prospect of 2024 propect," 2024 Annual report of Information and Telecommunication, vol. 2024-1, Jan. 2024. 
  5. J. Lee and H. Lee, "IEEE 802.11ah sub 1 GHz WLAN technology," Mag. of Information and Telecommunication, vol. 32, no. 3, Mar. 2015, pp. 77-84. 
  6. J. Yoon, "A design and implementation of dual band monopole antenna with two arc-shaped line for WLAN application," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1049-1056. https://doi.org/10.13067/JKIECS.2017.12.6.1049 
  7. S. Park and J. Jeong, "Modified yagi dipole antenna for WLAN dual-band operation," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, 2018, pp. 533-538. https://doi.org/10.13067/JKIECS.2018.13.3.533 
  8. B. Kang, S. Rhee, M. Jeong, D. Choi, and N. Kim, "Design and fabrication of dual-band planar monopole antenna with defected ground structure for WLAN applications," J. of Korea Institute of Electromagnetic Engineering and Science, vol. 29, no. 1, 2018, pp. 42-49. https://doi.org/10.5515/KJKIEES.2018.29.1.42 
  9. W. Zaman, H. Ahmad, and H. Mehmood, "A miniaturized meandered printed monopole antenna for triband applications," Microwave Opt. Technol. Lett., 31149, 2017, pp. 1-6. https://doi.org/10.1002/mop.31149 
  10. S. Kim and J. Yoon, "Design and manufacture of triple-band antennas with modified rectangular ring and rectangular patch for WLAN/WiMAX system application," J. of the Korea Institute of Information and Communication Sciences, vol. 23, no. 3, 2019, pp. 341-348. https://doi.org/10.6109/jkiice.2013.17.10.2265 
  11. H. Ahmad, W. Zaman, S. Bashir, and M. Rahman, "Compact triband slotted printed monopole antenna for WLAN and WiMAX application," Int J. RF Microw. Comput. Aided Eng., e21986, 2019, pp. 1-8. https://doi.org/10.1002/mmce.21986 
  12. C. Han and J. Choi, "Design of indoor repeater antenna for WLAN and Sub-6 GHz band," 2020 Korea Institute of Electromagnetic Engineering and Science Summer Conference, vol. 8, no. 1, 2020, pp. 703. 
  13. T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microwave and Optical Technology Letters, vol. 62, no. 5, May, 2020, pp. 2090-2103. https://doi.org/10.1002/ mop.32287 
  14. H. Zhyang, F. Li, W. Ding, H. Tan, J. Zhuang, C. Liu, C. Tian, S. Wang, F. Kong, and K. Li, "A triple band microstrip antenna with a monopole impedance converter for WLAN and 5G applications," Int. J. Antennas and propagation, Article ID 3339240, 2022, pp. 1-9. https://doi.org/10.1155/2022/3339240 
  15. T. Maamria, M. Challal, F. Benmahmoud, K. Fertas, and A. Mesloub, "A novel compact quad-band planar antenna using meander-line, multi-stubs, and slots for WiMAX, WLAN, LTE/5G sub-6 GHz applications," International Journal of Microwave and Wireless Technology, vol. 15, no. 5, 2022, pp. 852-859. https://doi.org/10.1017/S1759078722000939