DOI QR코드

DOI QR Code

A Study on the Flexural Fatigue Performance Evaluation of Copolymer Aramid Fiber

공중합 아라미드의 굴곡피로성능 평가에 관한 연구

  • Hong Jin Yoon (Research Infrastructure Utilization Center, FITI Testing & Research Institute) ;
  • Dong Ki Oh (Research Infrastructure Utilization Center, FITI Testing & Research Institute) ;
  • Chang Ju Kim (Research Infrastructure Utilization Center, FITI Testing & Research Institute) ;
  • Jong Dae Lee (Department of Chemical Engineering, Chungbuk National University)
  • 윤홍진 (FITI시험연구원 기반활용센터) ;
  • 오동기 (FITI시험연구원 기반활용센터) ;
  • 김창주 (FITI시험연구원 기반활용센터) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2024.07.05
  • Accepted : 2024.09.11
  • Published : 2024.11.01

Abstract

Although copolymer aramid is a fiber with excellent flexural performance, there is no test method to evaluate flexural fatigue performance. Various studies are currently being conducted in korea to develop copolymer aramid, and in order to develop the reliability of aramid fibers to a global level, it is necessary to develop a test method to evaluate the flexural fatigue performance of aramid fibers. In this study, we developed an test equipment and test method that can evaluate the flexural fatigue performance of copolymer aramid and analyzed the flexural fatigue performance of aramid fiber. Flexing rollers are made of ceramic materials and rotating shapes to minimize friction. The diameter of the roller was set to 10 mm by calculating the minimum allowable curvature. The B10 life was calculated through a flexural fatigue test, and the para-aramid was 125,770 cycles, the copolymer aramid was 598,150 cycles, and the aramid nano fiber(ANF) coated copolymer aramid was 589,073 cycles. Through the S-N diagram, the fatigue life relationship according to the load change was confirmed. copolymer aramid fibers exhibit better flexural fatigue performance than para-aramid fibers at high loads. The ANF coated copolymer aramid also exhibits excellent flexural fatigue performance.

공중합 아라미드는 기존의 파라계 아라미드의 단점인 낮은 신축성을 개선한 섬유로서 굴곡 성능이 우수한 특성을 갖고있지만 굴곡피로 성능을 평가할 수 있는 평가법은 부재한 실정이다. 현재 국내에서는 공중합 아라미드 개발을 위해 다양한 연구가 진행되고 있으며 아라미드의 신뢰성을 세계적 수준까지 발전시키기 위해서는 굴곡성능을 평가할 수 있는 평가법 개발이 필요한 상황이다. 본 연구에서는 공중합 아라미드의 굴곡피로성능을 평가할 수 있는 평가장치와 평가법을 개발하고 아라미드의 굴곡피로성능을 분석하였다. 굴곡피로시험기의 굴곡부는 마찰을 최소화 하기 위해 롤러 재질을 세라믹 재질로 선정하였으며 롤러 형태는 회전형태로 제작하였다. 롤러의 직경은 최소허용곡률을 계산하여 10 mm로 선정하였다. 굴곡피로시험을 통해 B10 수명을 산출하였으며 파라계 아라미드는 125,770회, 공중합 아라미드 598,150회, ANF(Aramid Nano Fiber)로 표면처리한 공중합 아라미드는 589,073회로 나타내었다. S-N선도를 통해 하중 변화에 따른 피로 수명 관계를 파악하였으며 고하중 조건에서도 공중합 아라미드 가 파라계 아라미드 보다 우수한 굴곡피로 성능을 나타내고 ANF로 표면처리한 공중합 아라미드 또한 우수한 굴곡 피로 성능을 나타내는 것을 확인하였다.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 산업기술평가관리원(KETI)연구비 지원에 의한 연구임(20015871).

References

  1. Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T., "High-performance Fiber-reinforced Concrete: A Review," J. Mater. Sci., 51(14), 6517-6551(2016).
  2. Han, D., Ma, Q., Wang, J., Chen, H., Wang, C. and Han, W., "Effect of the Addition of Different Amounts of Aramid Fibers on Metal Friction and Wear during Mixing," Polymers, 14(14), 2961-2979(2022).
  3. Sreekumar, P. A., Thomas, S. P., Saiter, J. M., Joseph, K., Unnikrishnan, G. and Thomas, S., "Effect of Fiber Surface Modification on the Mechanical and Water Absorption Characteristics of Sisal/polyester Composites Fabricated by Resin Transfer Molding," Compos. Part A Appl. Sci. Manuf., 40(11), 1777-1784(2009).
  4. Lee, S. T., Kim, B. S., Choi, H. N., Lee, K. Y. and Lee, S. G., "Interfacial Adhesion Properties of Plasma Treated Aramid Fiber with Chloroprene Rubber," Text. Sci. Eng., 47(3), 205-211(2010).
  5. Matsuo, T., "Fiber Material for Advanced Technical Textiles," Text. Prog., 40(2), 87-121(2008).
  6. Inagaki, N., Tasaka, S., Kawai, H. and Yamada, Y., "Surface Modification of Aromatic Polyamide Film by Remote Oxygen Plasma," J. Polym. Sci., 64(5), 831-840(1997).
  7. Park, J. H., Lee, S. H., Jang, H. D., Kim. G. S. and Yang, J. S., "Prediction of Characteristics Life of the Rubber Gasket," J. Appl. Rel., 10(4), 213-235(2010).
  8. Wang, L., Shi, Y., Chen, S., Wang, W., Tian, M. and Ning, N., "Highly Efficient Mussel-like Inspired Modification of Aramid Fibers by UV-accelerated Catechol/polyamine Deposition Followed Chemical Grafting for High-performance Polymer Composites," Chem. Eng. J., 314(15), 583-593(2017).
  9. Nasser, J., Lin, J., Steinke, K. and Sodano, H., "Enhanced Interfacial Strength of Aramid Fiber Reinforced Composites Through Adsorbed Aramid Nanofiber Coatings," Compos. Sci. Technol., 174(12), 125-133(2019).
  10. Park, G. R., Kim, H. R., Jeong, G. Y., Kim, D. H., Noh, S. C., Gwon, D. J., Choi, M. C. and Koo, J. S., "Investigation of Copoly- para-aramid Fiber Dispersion in Chloroprene Rubber Matrix and Improvement of Dispersibility Through Fiber Surface Modification," Elastomers Compos., 57(4), 175-180(2022).
  11. Park, S. M., Kwon, I. J., Sim, J. H., Lee, J. H., Kim, S. S., Lee, M. C. and Lee, J. S., "Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol," J. Korean Soc. Dye. and Finish., 25(2), 126-133(2013).
  12. Epstein, M. E. and Rosenthal, A. J., "Spinning of Polyamides from Sulfuric Acid Solution : Polymer Solubility and Coagulation Mechanisms," Text. Res. J., 36(9), 813-821(1966).
  13. Morton, W. and Hearle, W., "Physical Properties of Textile Fibres," Woodhead Publishing in Textiles, 4th, ed., England(2005).
  14. Kimura, Y., Tsuchida, A. and Katsuraya, K., "High-Performance and Specialty Fibers," The Society of Fiber Science and Technology, Japan(2016).
  15. Lee, J. H., Lee, J. D., Park, S. M. and Lee, J. W., "Adhesion Between Surfaces Treated with Aramid Fiber and Silicone/Fluorine Rubber," Text. Sci. Eng., 55(5), 349-355(2018).
  16. Zhang, B., Lian, T., Shao, X., Tian, M., Ning, N., Zhang, L. and Wang, W., "Surface Coating of Aarmid Fiber by a Graphene/ Aramid Nanofiber Hybrid Material to Enhance Interfacial Adhesion with Rubber Matrix," Ind. Eng. Chem. Res., 60(6), 2472-2480(2021).
  17. Yeo, D. H., Lee, J. H., Lee, J. H., Yu, S. H., Park, Y. T., Sung, J. H. and Sim, J. H., "A Study on the Flow Analysis of Air-gap Wet Spinneret according to the Viscosity of Copolymerized Aramid Polymer," J. Korean Soc. Dye. and Finish., 34(1), 27-37(2022).
  18. Shin, S. H., Jang, J. S., Kim, E. Y. and Kim, H. D., "Performance Improvement of Aramid / Epoxy Composite by Surface Treatment of Aramid Fiber," Polym. Korea, 20(1), 134-142(1996).
  19. Vickers, P. E., Watts, J. F., Perruchot, C. and Chehimi, M. M., "The Surface Chemistry and Acid-base Properties of a PANbased Carbon Fibre," Carbon, 38(5), 675-689(2000).
  20. Fukunaga, A., Ueda, S. and Magumo, M., "Anodic Surface Oxidation Mechanisms of PAN-based and Pitch-based Carbon Fibres," J. Mater. Sci., 34(12), 2851-2854(1999).
  21. Plawky, U., Londschien, M. and Michaeli, W., "Surface Modification of An Aramid Fibre Treated in a Low-temperature Microwave Plasma," J. Mater. Sci., 31(22), 6043-6053(1996).
  22. Kim, E. M. and Jang, J. H., "Surface Modification of Meta-aramid Films by UV/ozone Irradiation," Fibers. Polym., 11(5), 677-682(2010).
  23. Yoon, H. J., Oh, D. K., Jo, J. H. and Lee, J. D., "Study on the Interfacial Stability of Rubber/copolymer Aramid by Surface Treatment of Copolymer Aramid Nano Fiber," Polym. Korea, 48(2), 158-164(2024).
  24. Miraftab, M., "Flex Fatigue of Textile Fibres,"Woodhead Publishing in Textiles, U.K.(2009).
  25. Jariwala, B. C., "The Study of Kink Bands and Flex Failure in Nylon 6.6 and Polyester Fibres," Ph.D. Dissertation, U.M.I.S.T., Manchester(1974).