DOI QR코드

DOI QR Code

다공판 시스템을 이용한 빌트인 냉장고 저주파 소음 저감

Low-frequency noise reduction in a built-in refrigerator utilizing perforated plate system

  • 김형진 (부산대학교) ;
  • 신정현 (부산대학교) ;
  • 송경준 (부산대학교) ;
  • 김태훈 (LG전자) ;
  • 구준효 (LG전자)
  • HyoungJin Kim ;
  • JeongHyun Shin ;
  • KyungJun Song (School of Mechanical Engineering, Pusan National University) ;
  • Tae-Hoon Kim ;
  • JunHyo Koo
  • 투고 : 2024.07.30
  • 심사 : 2024.09.21
  • 발행 : 2024.09.30

초록

본 논문은 빌트인 냉장고의 기계실에서 발생하는 저주파 소음을 감소하기 위해 다공판과 흡음재를 이용한 다공판 시스템을 제작 및 설치하여 소음을 개선하는 연구이다. 다공판의 형상 변화를 통해 다공판 시스템의 흡음 대역을 이론적 방법, Finite Element Analysis(FEA), 임피던스 튜브 실험적 방법을 통해 비교 분석하여 최적 형상을 제시하였다. 방사음향파워레벨 시뮬레이션을 통해 다공판 시스템의 설치에 따른 저주파 대역의 Sound Power Level(PWL)이 감소함을 볼 수 있었으며, 반무향실에서의 소음 실험을 통해 다공판 시스템의 효과를 검증하였다.

This paper investigates the reduction of low-frequency noise emitted from the machine room of a built-in refrigerator using perforated plate system composed of perforated panels and sound-absorbing materials. The study employs theoretical methods, Finite Element Analysis (FEA), and impedance tube experiments to compare and analyze absorption characteristics across different shapes of perforated panels, aiming to propose an optimal configuration. Simulation of radiated sound power levels demonstrates a decrease in the low-frequency band of the Sound Power Level (PWL) upon implementing perforated plate system. Experimental noise tests conducted in a semi-anechoic chamber validate the effectiveness of the perforated plate system.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. J. E. Oh, C. H. Lee, M. R. Lee, and S. H. Yum, "A study on the noise source identification of refrigerator compressor" (in Korean), J. Acoust. Soc. Kr. 6, 48-57 (1987).
  2. C. B. Neto, C. Melo, A. Lenzi, and ALG Caetano, "Noise generation in household refrigerators," Proc. 15th IRCC, 1371 (2014).
  3. Y. G. Lee and W. J. Kim, "An experimental investigation into the mechanism of the refrigerator contraction -expansion noise" (in Korean), J. Acoust. Soc. Kr. 41, 389-396 (2022).
  4. S. S. Son, J. Y. Seo, B. Y. Lee, and W. J. Kim, "A study on the structure-borne noise reduction of refrigerators using taguchi method" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 20, 470-476 (2010).
  5. Y. Birari and M. Nadgouda, "Noise reduction of a reciprocating compressor by adding a resonator in suction path of refrigerant," Proc. 14th ICSV, 641-648 (2007)
  6. K. Y. An, H. J. Kwon, J. Y. Jang, and K. J. Song, "Acoustic metamaterial design for noise reduction in vacuum cleaner," J. Mech. Sci. Technol. 36, 5353-5362 (2022).
  7. D.-Y. Maa, "Microperforated-panel wideband absorbers," Noise Control Eng. J. 29, 77-84 (1987).
  8. D.-Y. Maa, "Potential of microperforated panel absorber," J. Acoust. Soc. Am. 104, 2861-2866 (1998).
  9. B. K. Hong, H. Y. Song, S. W. Seo, and D. H. Lee, "A study on the sound absorptive characteristics and performance of parallel perforated plate systems" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 15, 1003-1008 (2005).
  10. S. H. Park and S. H. Seo, "Absorption characteristics of micro-perforated panel absorber according to incident pressure magnitudde and its geometric parameters" (in Korean), Proc. Trans. Korean Soc. Noise Vib. Eng. 178-185 (2011).
  11. R. Tayong, "Effects of unevenly distributed holes on the perforated plate sound absorption coefficient," Noise Control Eng. J. 61, 547-552 (2013).
  12. Lord Rayleigh, Theory of Sound II (MacMillan, New York, 1929), pp. 327.
  13. I. B. Crandall, Theory of Vibration System and Sound (Van Nostrand, New York, 1926), pp. 229.
  14. C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier Publishing, New York, 1949), pp. 25.
  15. K. Attenborough, "On the acoustic slow wave in air filled granular media," J. Acoust. Soc. Am. 81, 93-102 (1987).
  16. K. Wilson, "Relaxation-matched modeling of propagation through porous media, including fractal pore structure," J. Acoust. Soc. Am. 94, 1136-1145 (1993).
  17. D. L. Johnson, J. Koplik, and R. Dashen, "Theory of dynamic permeability and tortuosity in fluid-saturated porous media," J. Fluid Mech. 176, 379-402 (1987).
  18. ISO 10534-2, Acoustics - Determination of Acoustic Properties in Impedance Tubes - Part 2: Two- Micro-Phone Technique of Normal Sound Absorption CoeffiCient and Normal Surface Impedance, 2023.
  19. ASTM E1050-19, Standard Test Method for Impedance and Absorption of Acoustical Materials using a Tube, Two Microphones and a Digital Frequency Analysis System, 2019.