DOI QR코드

DOI QR Code

A study on reproduction algorithm of croaker sounds for sonar signals based on marine biological sounds

해양생물음 기반 소나 신호를 위한 민어소리 재현 알고리즘 연구

  • Jong Wook Choi ;
  • Young Geul Yoon ;
  • Sunhyo Kim ;
  • Hansoo Kim ;
  • Sungho Cho ;
  • Donhyug Kang ;
  • Jee Woong Choi (Department of Marine Sciences and Convergence Engineering & Department of Military Information Engineering & Department of Intelligence and Information Engineering, Hanyang University)
  • 최종욱 (한양대학교 해양융합과학과) ;
  • 윤영글 (한국해양과학기술원 해양영토.방위연구부) ;
  • 김선효 (한국해양과학기술원 해양영토.방위연구부) ;
  • 김한수 (한국해양과학기술원 해양영토.방위연구부) ;
  • 조성호 (한국해양과학기술원 해양영토.방위연구부) ;
  • 강돈혁 (한국해양과학기술원 해양영토.방위연구부) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과)
  • Received : 2024.06.26
  • Accepted : 2024.08.16
  • Published : 2024.09.30

Abstract

The sonar technology based on marine biological sounds can be utilized in various fields, such as underwater covert target detection and communication. To develop sonar technology based on marine biological sounds, it is essential to first conduct research on the acoustic characteristics of the target marine species. Based on the analyzed data, research on signal reproduction algorithms should be carried out. In this study, we conducted research on the acoustic characteristics analysis and signal reproduction algorithms for the brown croaker, one of the species mainly inhabiting the southwestern coast of the Korean Peninsula. From the brown croaker sounds measured for approximately 100 min in a land-based tank, we analyzed the signal length, number of pulses, interval between pulses, peak frequency, and -3 dB bandwidth. Based on these acoustic characteristics, various brown croaker sounds were reproduced using a combination of wavelets and sinusoids. We performed similarity analysis with the actual measured brown croaker sounds by obtaining the maximum value of the normalized 2D cross-correlation in the spectrogram.

해양생물음 기반 소나 기술은 수중에서 은밀한 표적 탐지 및 통신 등 다양한 분야에 활용될 수 있다. 해양생물음 기반 소나 기술을 개발하기 위해서는 대상 해양생물에 대한 음향학적 특성 연구가 선행되어야 하며, 분석된 자료를 토대로 신호 재현 알고리즘에 대한 연구가 수행되어야 한다. 본 연구에서는 한반도 서남해 해역에서 주로 서식하는 종 중 하나인 민어(Brown croaker)를 대상으로 음향학적 특성 분석 및 신호 재현 알고리즘에 대한 연구를 수행하였다. 육상 수조에서 약 100 min 동안 측정한 민어 소리로부터 신호 길이, 펄스 개수, 펄스 간 간격, 피크 주파수, -3 dB 대역폭을 분석하였다. 이러한 음향학적 특성들을 기반으로 웨이블렛 및 정현파의 합을 통해 다양한 민어소리를 재현하였으며, 스펙트로그램 상에서 정규화된 2차원 상호상관의 최댓값을 통해 실제 측정된 민어소리와의 유사도 분석을 수행하였다.

Keywords

Acknowledgement

본 연구는 2024년 정부(방위사업청)의 재원으로 국방기술진흥연구소(KRIT)의 지원을 받아 수행된 연구임(KRIT-CT-22-056, 과제명 : 해양생물음 재현 알고리즘 및 신호 모델링 기법 연구).

References

  1. W. W. L. Au and M. C. Hastings, Principles of Marine Bioacoustics (Springer, New York, 2008), pp. 3.
  2. Y. Su, Z. Song, H. Li, Y. Zhang, W. Xiang, J. Hui, S. Sun, Z. Xia, and Y. Zhang, "Call properties of the large yellow croaker (Larimichthys crocea) during reproduction with insight into directivity," J. Acoust. Soc. Am. 153, 3192 (2023).
  3. Y. G. Yoon, H. S. Sohn, K. J. Park, Y. M. Choi, S. H. Kim, and J. W. Choi, "Study of acoustic characteristics of common dolphins (Delphinus delphis) in the east sea" (in Korean), J. Fish Aquat. Sci. 50, 406-412 (2017).
  4. F. Ladich, "Sound production and acoustic communication," in handbook of The senses of fish: adaptations for the reception of natural stimuli, edited by G. V. E. Emde, J. Mogdans, and B. G. Kapoor (Narosa Publishing House, Vienna, 2004).
  5. A. V. Lindseth and P. S. Lobel, "Underwater soundscape monitoring and fish bioacoustics: a review," Fishes, 3, 36 (2018).
  6. J. Jiang, X. Wang, F. Duan, C. Li, X. Fu, T. Huang, L. Bu, L. Ma, and Z. Sun, "Bio-inspired covert active sonar strategy," Sensors, 18, 2436 (2018).
  7. S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, "Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles," Appl. Acoust. 120, 120-128 (2017).
  8. S. Liu, G. Qiao, Y. Yu, L. Zhang, and T. Chen, "Biologically inspired covert underwater acoustic communication using high frequency dolphin clicks," Proc. IEEE 2013 OCEANS-San Diego, 1-5 (2013).
  9. S. Liu, G. Qiao, and A. Ismail, "Covert underwater acoustic communication using dolphin sounds," J. Acoust. Soc. Am. 133, EL300-EL306 (2013).
  10. G. Qiao, M. Bilal, S. Liu, Z. Babar, and T. Ma, "Biologically inspired covert underwater acoustic communication-A review," Phys. Commun. 30, 107-114 (2018).
  11. X. Han, J. Yin, P. Du, and X. Zhang, "Experimental demonstration of underwater acoustic communication using bionic signals," Appl. Acoust. 78, 7-10 (2014).
  12. Y. Pailhas, C. Capus, and K. Brown, "Bio-inspired sonar," Proc. IEEE 2011 17th Int. Conf. DSP, 1-6 (2011).
  13. B. Fenton, F. H. Jensen, E. K. V. Kalko, and P. L. Tyack, Sonar Signals of Bats and Toothed Whales (Springer, New York, 2014), pp.11-59.
  14. Z. Sun, J. Jiang, Y. Li, X. Wang, C. Li, Z. Li, Y. Miao, X. Fu, and F. Duan, "Bio-inspired covert active sonar detection method based on the encoding of sperm whale clicks," IEEE Sens. J. 22, 1449-1460 (2021).
  15. S. A. Hossain, A. Mallik, and M. Hossen, "An analytical analysis on fish sounds," Akustika, 33, 15-23 (2019).
  16. S. Flore, O. Adam, J. F. Motsch, and C. Guinet, "Definition of the Antarctic and pygmy blue whale call templates. Application to fast automatic detection," Canadian Acoustics, 36, 93-103 (2008).
  17. R. P. Dziak, J. H. Haxel, T. K. Lau, S. Heimlich, J. Caplan-Auerbach, D. K. Mellinger, H. Matsumoto, and B. Mate, "A pulsed-air model of blue whale B call vocalizations," Scientific Reports, 7, 9122 (2017).
  18. C. L. Lee and M. H. Park, "Taxonomic revision of the family Sciaenidae (Pisces, Perciformes) from Korea," Korean Journal of Ichthyology, 4, 29-53 (1992).
  19. K. H. Lee, Y. S. Yang, J. K. Kim, H. C. An, and J. K. Shin, "Characterization of sounds produced by 3 sciaenid species" (in Korean), J. Kor. Soc. Fish. Tech. 43, 206-211 (2007).
  20. A. Borie, H. K. Mok, N. L. Chao, and M. L. Fine, "Spatiotemporal variability and sound characterization in Silver Croaker Plagioscion squamosissimus (Sciaenidae) in the Central Amazon," PloS one, 9, e99326 (2014).
  21. G. L. Hill, M. L. Fine, and J. A. Musick, "Ontogeny of the sexually dimorphic sonic muscle in three sciaenid species," Copeia, 3, 708-713 (1987).
  22. M. Nielsen, "On the construction and frequency localization of finite orthogonal quadrature filters," J. Approx. Theory, 108, 36-52 (2001).