DOI QR코드

DOI QR Code

Optimization of the P+ Region in SiC-Based MPS Diodes: Enhancing BFOM and Alleviating Snap-Back Phenomenon

SiC 기반 MPS 다이오드 P+ 영역 최적화: BFOM 향상과 Snap-Back 현상 완화를 위한 연구

  • Seung-Hyun Park (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Tae-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Se-Rim Park (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Ju-Eun Yun (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Ji-Hwan Jeon (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Jong-Min Oh (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Weon Ho Shin (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electric Materials Engineering, Kwangwoon University)
  • 박승현 (광운대학교 전자재료공학과) ;
  • 이태희 (광운대학교 전자재료공학과) ;
  • 박세림 (광운대학교 전자재료공학과) ;
  • 윤주은 (광운대학교 전자재료공학과) ;
  • 이건희 (광운대학교 전자재료공학과) ;
  • 전지환 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2024.06.13
  • Accepted : 2024.07.10
  • Published : 2024.11.01

Abstract

Wide bandgap (WBG) devices, especially SiC, are gaining traction as materials for high-power EV conversion devices due to their superior efficiency and switching capabilities compared to Si-based power devices. SiC allows for high power, high temperature, and high frequency applications because of its outstanding thermal conductivity, saturation velocity, and dielectric breakdown field. SiC-based MPS diodes combine the advantages of SiC-based SBDs and PiN diodes, allowing high-frequency switching operation with low leakage currents under high voltage conditions. However, MPS diodes exhibit snapback phenomena influenced by the P+ region's size, necessitating optimization. A TCAD simulation studied the impact of the P+ region's depth and width on MPS diode performance. Increasing the P+ width raised the On-specific resistance (Ron,sp) and lowered the maximum voltage during snapback (Vsnap). Increasing the depth decreased both Breakdown voltage (BV) and Vsnap. A trade-off between the semiconductor performance index BFOM and Vsnap was identified, leading to optimized dimensions. The optimized MPS diode shows a low Vsnap of about 3.89 V and a high BFOM of 1.72 GW·cm2, highlighting its potential as a next-generation high-performance power conversion device.

Keywords

Acknowledgement

This work was supported by the Korea Institute for Advancement of Technology (KIAT) (P0012451), the Korea Evaluation Institute of Industrial Technology (KEIT) (RS-2024-00401983) grant funded by the MOTIE of Korea, and the Research Grant of Kwangwoon University in 2024.

References

  1. S. Li, S. Lu, and C. C. Mi, Proc. IEEE, 109, 985 (2021). doi: https://doi.org/10.1109/JPROC.2021.3071977
  2. A. S. Abdelrahman, Z. Erdem, Y. Attia, and M. Z. Youssef, Can. J. Electr. Comput. Eng., 41, 45 (2018). doi: https://doi.org/10.1109/CJECE.2018.2807780
  3. X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, IEEE Trans. Ind. Electron., 64, 8193 (2017). doi: https://doi.org/10.1109/TIE.2017.2652401
  4. Z. Liu, B. Li, F. C. Lee, and Q. Li, IEEE Trans. Ind. Electron., 64, 9114 (2017). doi: https://doi.org/10.1109/TIE.2017.2716873
  5. S. Zhao, A. Kempitiya, W. T. Chou, V. Palijia, and C. Bonfiglio, IEEE Trans. Ind. Appl., 58, 2965 (2022). doi: https://doi.org/10.1109/TIA.2022.3151867
  6. A. Wang, Y. Bai, Y. Tang, C. Li, Z. Han, J. Lu, H. Chen, X. Tian, C. Yang, J. Hao, and X. Liu, IEEE Trans. Electron Devices, 68, 6330 (2021). doi: https://doi.org/10.1109/TED.2021.3122403
  7. Q. Du and X. Tao, IEEE Trans. Electron Devices, 67, 4033 (2020). doi: https://doi.org/10.1109/TED.2020.2982684
  8. H. Niwa, J. Suda, and T. Kimoto, IEEE Trans. Electron Devices, 64, 874 (2017). doi: https://doi.org/10.1109/TED.2016.2636573
  9. X. D. Zhang, Y. Wang, M. T. Bao, X. J. Li, J. Q. Yang, and F. Cao, IEEE Trans. Electron Devices, 68, 5062 (2021). doi: https://doi.org/10.1109/TED.2021.3106620
  10. H. J. Lee, Y. H. Kang, S. W. Jung, G. H. Lee, D. W. Byun, M. C. Shin, C. H. Yang, and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 241 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.3.5
  11. A. Haggag and K. Hess, IEEE Trans. Electron Devices, 47, 1624 (2000). doi: https://doi.org/10.1109/16.853040
  12. N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, and N. Zorzi, IEEE Trans. Nucl. Sci., 58, 1233 (2011). doi: https://doi.org/10.1109/TNS.2011.2123919