DOI QR코드

DOI QR Code

Electrical Properties of (Ba0.27CaSr)(Zr0.95Ti0.05)O3 Dielectric Ceramic with C0G Temperature Characteristics

  • Hong Sun Lee (R&D Center, Samwha Capacitor) ;
  • Jung Rag Yoon (R&D Center, Samwha Capacitor)
  • Received : 2024.08.12
  • Accepted : 2024.08.29
  • Published : 2024.11.01

Abstract

In this study, the electrical properties of a C0G (class 1 ceramic) dielectric composition with internal reducibility, specifically (Ba0.27CaSr)(Zr0.95Ti0.05)O3, were investigated by fixing Ba at the A site and varying the Ca/Sr molar ratio. The potential application of this composition in high-permittivity C0G MLCCs was examined. The powder was calcined at 1,150℃ for 2 hours, as determined by TG-DTA analysis, and the resulting powder was ground to achieve a particle size (D50) of 0.35 to 0.4 ㎛ and a specific surface area (BET) of 4.5 to 5.0 g/m2. With a Ca/Sr molar ratio of 0.3, the composition (Ba0.27Ca0.17Sr0.56) (Zr0.95Ti0.05)O3 exhibited electrical properties with a permittivity of 41.9, a loss of less than 0.008%, and an insulation resistance exceeding 2.2×1013 Ω. The feasibility of using this composition for high-capacitance C0G MLCCs was confirmed.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (RS-2024-00430833, Development of MLCC commercialization technology for automotive electronics an alternative to rare earth for high reliability response) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, and H. W. Jang, J. Mater. Chem. C, 7, 9782 (2019). doi: https://doi.org/10.1039/c9tc02921d
  2. I. Seo, H. W. Kang, and S. H. Han, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 103 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.2.1
  3. A. Zeb and S. J. Milne, J. Mater. Sci.: Mater. Electron., 26, 9243 (2015). doi: https://doi.org/10.1007/s10854-015-3707-7
  4. T. Yamagushi, Y. Komatsu, T. Otobe, and Y. Murakami, Ferroelectrics, 27, 273 (1980). doi: https://doi.org/10.1080/00150198008226116
  5. S. H. Lee, M. K. Kim, H. K. Kim, and J. R. Yoon, J. Ceram. Process. Res., 18, 722 (2017). doi: https://doi.org/10.36410/jcpr.2017.18.10.722
  6. M. Chen, J. L. Liao, and H. I. Hsiang, Ceram. Int., 48, 28023 (2022). doi: https://doi.org/10.1016/j.ceramint.2022.06.107
  7. Q. Pang, Y. Li, F. Yang, Z. Liu, X. Li, H. Cheng, S. Sun, Y. Chen, and G. Wang, Ceram. Int., 49, 8598 (2023). doi: https://doi.org/10.1016/j.ceramint.2022.11.037
  8. F. Shi, K. Liang, and Z. M. Qi, J. Mater. Res., 31, 3249 (2016). doi: https://doi.org/10.1557/jmr.2016.340
  9. L. Duan, J. Zhang, J. Li, H. Xiang, Y. Tang, X. Luo, and L. Fang, J. Eur. Ceram. Soc., 43, 4066 (2023). doi: https://doi.org/10.1016/j.jeurceramsoc.2023.03.028
  10. A. Devoe, H. Trinh, and F. Dogan, Int. J. Appl. Ceram. Technol., 20, 3140 (2023). doi: https://doi.org/10.1111/ijac.14432
  11. J. Joseph, T. M. Vimala, K.C.J. Raju, and V.R.K. Murthy, Jpn. J. Appl. Phys., 35, 179 (1996). doi: https://doi.org/10.1143/jjap.35.179
  12. N.T.K. Ngan and S. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 37, 274 (2024). doi: https://doi.org/10.4313/JKEM.2024.37.3.5
  13. I. Levin, T. G. Amos, S. M. Bell, L. Farber, T. A. Vanderah, R. S. Roth, and B. H. Toby, J. Solid State Chem., 175, 170 (2003). doi: https://doi.org/10.1016/s0022-4596(03)00220-2
  14. X. Cheng, Y. C. Zhen, P. Zhao, K. Hui, M. Xiao, L. Guo, Z. Fu, X. Cao, L. Li, and X. Wang, J. Am. Ceram. Soc., 106, 5294 (2023). doi: https://doi.org/10.1111/jace.19168
  15. S. H. Lee, D. Y. Kim, M. K. Kim, H. K. Kim, J. H. Lee, E. Baek, and J. R. Yoon, J. Ceram. Process. Res., 16, 495 (2015). doi: https://doi.org/10.36410/jcpr.2015.16.5.495
  16. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, J. Eur. Ceram. Soc., 27, 3063 (2007). doi: https://doi.org/10.1016/j.jeurceramsoc.2006.11.037