DOI QR코드

DOI QR Code

Quantum Computing Revolutionizing Materials Science: Basic Principles and Trends in Applications for Nanomaterials

재료 과학을 변혁시키는 양자 컴퓨팅: 기본 원리와 나노 소재 응용 연구 동향

  • Jae-Hee Han (Department of Materials Science and Engineering, Gachon University) ;
  • Joonho Bae (Department of Physics, Gachon University)
  • 한재희 (가천대학교 신소재공학과) ;
  • 배준호 (가천대학교 물리학과)
  • Received : 2024.09.23
  • Accepted : 2024.10.04
  • Published : 2024.11.01

Abstract

Quantum computing is set to transform the field of materials science, offering computational methods that could far surpass conventional approaches for tackling intricate material design challenges. This review introduces the foundational principles of rapidly growing quantum computing and its application trends in the design and analysis of nanomaterials. We explain how quantum speedup, achieved through quantum algorithms utilizing qubit superposition and entanglement, is applied to material design. Additionally, the principles and research trends of quantum variational methods, including the Variational Quantum Eigensolver (VQE), which has recently gained attention as a quantum algorithm simulation technique, will be discussed. By combining new techniques based on quantum algorithms with the quantum speed-up, the quantum computing is expected to offer new insights into data-intensive materials research and provide innovative methodologies for the development of new functional materials. With the advancement of quantum algorithms, the field of materials science could enter a new era, enabling more precise and efficient approaches in materials design and functional analysis.

Keywords

Acknowledgement

This work was supported by project # 202311800001. This work was supported by the National Research Foundation of Korea (NRF-2021R1A2C1008272).

References

  1. R. P. Feynman, Feynman and Computation (CRC Press, place, 2018), p. 133. doi: https://doi.org/10.1201/9780429500459-11 
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Place, 2010) p. 0. doi: https://doi.org/10.1017/CBO9780511976667 
  3. J. Bae, Introduction to Quantum Computing and Quantum Algorithm (Gyomoon Publishing Co. place, 2023)
  4. Y. Cao, J. Romero, and A. Aspuru-Guzik. IBM J. Res. Dev., 62, 1 (2018). doi: https://doi.org/10.1147/JRD.2018.2888987 
  5. K. Batra, K. M. Zorn, D. H. Foil, E. Minerali, V. O. Gawriljuk, T. R. Lane, and S. Ekins, J. Chem. Inf. Model., 61, 2641 (2021). doi: https://doi.org/10.1021/acs.jcim.1c00166 
  6. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and A. Aspuru-Guzik, Sci. Rep., 2, 571 (2012). doi: https://doi.org/10.1038/srep00571 
  7. S. Pal, M. Bhattacharya, S. S. Lee, and C. Chakraborty, Mol. Biotechnol., 66, 163 (2024). doi: https://doi.org/10.1007/s12033-023-00765-4 
  8. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A, 52, 3457 (1995). doi: https://doi.org/10.1103/PhysRevA.52.3457 
  9. D. Deutsch, Proc. R. Soc. A, 400, 97 (1985). doi: https://doi.org/10.1098/rspa.1985.0070 
  10. C. Durr and P. Hoyer, arXiv preprint quant-ph/9607014, 0, 0 (1996). doi: https://doi.org/10.48550/arXiv.quant-ph/9607014 
  11. A. Ambainis, ACM SIGACT News, 35, 22 (2004). doi: https://doi.org/10.1145/992287.992296 
  12. S. Aaronson and A. Ambainis, Proc. Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC '15) (ACM, New York, USA, 2015) p. 307. http://hdl.handle.net/1721.1/99662 
  13. C. R. Wie, Quantum Inf. Comput., 19, 0967 (2019). doi: https://doi.org/10.48550/arXiv.1907.08119 
  14. S. Aaronson and P. Rall, Proc. 2020 Symposium on Simplicity in Algorithms (SOSA) (publisher, place, 2020) p. 24. doi: https://doi.org/10.1137/1.9781611976014.5 
  15. N. Benchasattabuse, P. Chongstitvatana, and C. Apomtewan, Proc. 2018 3rd International Conference on Computer and Communication Systems (ICCCS) (IEEE, Nagoya, Japan, 2018) p. 0. doi: https://doi.org/10.1109/CCOMS.2018.8463331 
  16. D. Qiu, L. Luo, and L. Xiao, Theor. Comput. Sci., 993, 114461 (2024). doi: https://doi.org/10.1016/j.tcs.2024.114461 
  17. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp. Math., 305, 53 (2002). doi: https://doi.org/10.1090/conm/305/05215 
  18. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Fortschr. Phys., 46, 493 (1998). doi: https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P 
  19. E. Ukkonen, Inf. Control, 64, 100 (1985). doi: https://doi.org/10.1016/S0019-9958(85)80046-2 
  20. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova, I. D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Chem. Rev., 119, 10856 (2019). doi: https://doi.org/10.1021/acs.chemrev.8b00803 
  21. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature, 549, 242 (2017). doi: https://doi.org/10.1038/nature23879 
  22. A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien, Nat. Commun., 5, 4213 (2014). doi: https://doi.org/10.1038/ncomms5213 
  23. 1Qbit, The Variational Quantum Eigensolver (VQE), http://openqemist.1qbit.com/docs/vqe_microsoft_qsharp.html (2019). 
  24. P. Lolur, M. Rahm, M. Skogh, L. Garcia-Alvarez, and G. Wendin, AIP Conf. Proc., 2362, 030005 (2021). doi: https://doi.org/10.1063/5.0054915 
  25. B. Avramidis, H. P. Paudel, D. Alfonso, Y. Duan, and K. D. Jordan, AIP Adv., 14, 035047 (2024). doi: https://doi.org/10.1063/5.0188249 
  26. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science, 309, 1704 (2005). doi: https://doi.org/10.1126/science.1113479 
  27. P.J.J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, Phys. Rev. X, 6, 031007 (2016). doi: https://doi.org/10.1103/PhysRevX.6.031007 
  28. I. Cong, S. Choi, and M. D. Lukin, Nat. Phys., 15, 1273 (2019). doi: https://doi.org/10.1038/s41567-019-0648-8 
  29. K. T. Schutt, F. Arbabzadah, S. Chmiela, K. R. Muller, and A. Tkatchenko, Nat. Commun., 8, 13890 (2017). doi: https://doi.org/10.1038/ncomms13890 
  30. G. H. Booth, A.J.W. Thom, and A. Alavi, J. Chem. Phys., 131, 054106 (2009). doi: https://doi.org/10.1063/1.3193710 
  31. W.M.C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys., 73, 33 (2001). doi: https://doi.org/10.1103/RevModPhys.73.33 
  32. A. Zen, J. G. Brandenburg, J. Klimes, A. Tkatchenko, D. Alfe, and A. Michaelides, Proc. Natl. Acad. Sci. U.S.A., 115, 1724 (2018). doi: https://doi.org/10.1073/pnas.1715434115 
  33. M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Proc. Natl. Acad. Sci. U.S.A., 114, 7555 (2017). doi: https://doi.org/10.1073/pnas.1619152114 
  34. G. Y. Wu, N. Y. Lue, and L. Chang, Phys. Rev. B, 84, 195463 (2011). doi: https://doi.org/10.1103/PhysRevB.84.195463 
  35. V. Cerletti, W. A. Coish, O. Gywat, and D. Loss, Nanotechnology, 16, R27 (2005). doi: https://doi.org/10.1088/0957-4484/16/4/R01 
  36. J. Preskill, Quantum, 2, 79 (2018). doi: https://doi.org/10.22331/q-2018-08-06-79 
  37. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. Jamie Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature, 574, 505 (2019). doi: https://doi.org/10.1038/s41586-019-1666-5 
  38. S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv preprint arXiv:1307.0411 (2013). doi: https://doi.org/10.48550/arXiv.1307.0411 
  39. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature, 460, 240 (2009). doi: https://doi.org/10.1038/nature08121 
  40. K. A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, Phys. Rev. A, 72, 050306 (2005). doi: https://doi.org/10.1103/PhysRevA.72.050306 
  41. M. Feng, Phys. Rev. A, 63, 052308 (2001). doi: https://doi.org/10.1103/PhysRevA.63.052308 
  42. S. S. Ivanov, P. A. Ivanov, I. E. Linington, and N. V. Vitanov, Phys. Rev. A, 81, 042328 (2010). doi: https://doi.org/10.1103/PhysRevA.81.042328 
  43. S. S. Ivanov, P. A. Ivanov, and N. V. Vitanov, Phys. Rev. A, 78, 030301 (2008). doi: https://doi.org/10.1103/PhysRevA.78.030301 
  44. H. L. Shi, S. Y. Liu, X. H. Wang, W. L. Yang, Z. Y. Yang, and H. Fan, Phys. Rev. A, 95, 032307 (2017). doi: https://doi.org/10.1103/PhysRevA.95.032307 
  45. P. J. Salas, Eur. Phys. J. D, 46, 365 (2008). doi: https://doi.org/10.1140/epjd/e2007-00295-1