DOI QR코드

DOI QR Code

Blast behaviour prediction and simulation methods: A state-of-the-art review

  • Tarek Sharaf (Department of Civil Engineering, Faculty of Engineering, Port Said University) ;
  • Sara Ismail (Department of Civil Engineering, Faculty of Engineering, Port Said University) ;
  • Mohamed Elghandour (Department of Civil Engineering, Faculty of Engineering, Port Said University) ;
  • Ahmed Turk (Department of Civil Engineering, Faculty of Engineering, Port Said University)
  • Received : 2024.06.19
  • Accepted : 2024.10.14
  • Published : 2024.10.25

Abstract

Recently, the phenomenon of disproportionate structural failure caused by blast load has grown more common in the field of engineering design. Blast-resistant analyses and designs have been developed by many structural techniques and methodologies to forecast the loads produced by a high explosive charge on structures with complicated geometry. These techniques are based on a good understanding of blast phenomena to analyze structures exposed to blast load. This paper provides a current state-of-the-art review of blast prediction and simulation methods to predict the design blast loads that are used to assess the structural response and damage level to an existing or new building. The damage criteria from the general design approach relevant to civil design applications in forecasting blast loads as well as structural system responses will be provided. Identifying the structures' expected damage class would aid in providing extra reinforcing or strengthening for damaged elements to meet the acceptance criteria or minimize damage by a suitable blast mitigation strategy. Based on identifying the damage class expected of a structure subjected to an explosion, blast mitigation strategies could be used to minimize damage and maximize the ability of the structure to function even after the explosion.

Keywords

Acknowledgement

The research described in this paper was not financially supported by any organization.

References

  1. Abdallah, M. (2020), "Numerical study of steel structures responses to external explosions", Int. J. Civil Environ. Eng., 14(4), 117-125.
  2. Adushkin, V. and Korotkov, A. (1961), "Parameters of a shock wave near to HE charge at explosion in air", J. Appl. Mech. Tech. Phys., 5, 119-123.
  3. Ahmad, S., Elahi, A., Pervaiz, H., Rahman, A.G.A. and Barbhuiya, S. (2014), "Experimental study of masonry wall exposed to blast loading", Materiales de Construccion, 64(313), e007-e007.
  4. Ahmad, S., Taseer, M. and Pervaiz, H. (2012), "Effects of impulsive loading on reinforced concrete structures", Technical Journal, University of Engineering and Technology Taxila, Vibration Analysis Issue, 8.
  5. Ahmed Galal, M., Bandyopadhyay, M. and Krishna Banik, A. (2020), "Progressive collapse analysis of three-dimensional steel-concrete composite building due to extreme blast load", J. Perform. Constr. Facil., 34(3), 04020021. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001419.
  6. Akram, M.R. and Yesilyurt, A. (2023), "Experimental analysis of blast loading effects on security check-post", Struct. Eng. Mech., 87(3), 273-282. https://doi.org/10.12989/sem.2023.87.3.273.
  7. Al-Thairy, H. (2018), "Behaviour and failure of steel columns subjected to blast loads: Numerical study and analytical approach", Adv. Mater. Sci. Eng., 2018(1), 1591384. https://doi.org/10.1155/2018/1591384.
  8. Anas, S. and Alam. M. (2022), "Comparison of existing empirical equations for blast peak positive overpressure from spherical free air and hemispherical surface bursts", Iran. J. Sci. Technol., Trans. Civil Eng., 46(2), 965-984. https://doi.org/10.1007/s40996-021-00718-4.
  9. Ansari, M.A., Abdi Behnagh, R. and Salvadori, A. (2021), "Numerical analysis of high-speed water jet spot welding using the arbitrary Lagrangian-Eulerian (ALE) method", Int. J. Adv. Manuf. Technol., 112, 491-504. https://doi.org/10.1007/s00170-020-06358-8.
  10. ANSYS, I. (2013), ANSYS Fluent Theory Guide (Release 15.0), Release 15.275 Technology Drive Canonsburg PA, 15317, ANSYS, Inc.
  11. Appuhamilage, G. (2015), Effects of Blast Loading on Reinforced Concrete Facade Systems, Victoria University.
  12. ARA. Products, S. (2000), Blast Design Software, Anti-Terrorist Blast (A.T.-BLAST), Version 3.0, Applied Research Associates, Inc., Albuquerque, NM, USA.
  13. Army. (1990), TM5-1300 Structures to Resist the Effects of Accidental Explosions, Joint Department of the Army, the Navy and the Air Force USA.
  14. ASCE (2014), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers Reston, VA.
  15. Bagheripourasil, M. and Mohammadi, Y. (2015), "Comparison between alternative load path method and a direct applying blast loading method in assessment of the progressive collapse", J. Rehab. Civil Eng., 3(2), 1-15.
  16. Bajic, Z. (2007), "Determination of TNT equivalent for various explosives", Faculty Technology Metallurgy Belgrade, University of Belgrade, Serbia.
  17. Baker, W.E. (1973), Explosions in Air, University of Texas Press.
  18. Barbier, M., Villamaina, D. and Trizac, E. (2015), "Blast dynamics in a dissipative gas", Phys. Rev. Lett., 115(21), 214301. https://doi.org/10.1103/PhysRevLett.115.214301.
  19. Barbier, M., Villamaina, D. and Trizac, E. (2016), "Microscopic origin of self-similarity in granular blast waves", Phys. Fluid., 28(8), 083302. https://doi.org/10.1063/1.4961047.
  20. Baum, J., Luo, H. and Loehner, R. (1995), "Numerical simulation of blast in the world trade center", 33rd Aerospace Sciences Meeting and Exhibit.
  21. Bethe, H.A., Fuchs, K., Hirschfelder, J.O., Magee, J.L., Peieris, R.E. and von Neumann, J. (1947), "Blast wave (No. LA-2000)", Los Alamos National Lab. (LANL), Los Alamos, NM, USA.
  22. Borvik, T., Hanssen, A.G., Langseth, M. and Olovsson, L. (2009), "Response of structures to planar blast loads-A finite element engineering approach", Comput. Struct., 87(9-10), 507-520. https://doi.org/10.1016/j.compstruc.2009.02.005.
  23. Britt, J. and Lumsden, M. (1994), "Internal blast and thermal environment from internal and external explosions: A user's guide for the BLASTX Code, Version 3.0", Science Applications International Corporation, St. Joseph, Louisiana, SAIC, 405-494.
  24. Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
  25. Budge, K.G. and Peery, J.S. (1993), "RHALE: a MMALE shock physics code written in C++", Int. J. Impact Eng., 14(1-4), 107-120. https://doi.org/10.1016/0734-743X(93)90013-W.
  26. Buwono, H. and Alisjahbana, S. (2020), "Modifications modeling friedlander s blast wave equation using 6th order polynomial equations", Int. J. Civil Eng. Technol. (IJCIET), 11(2), 183-191.
  27. Cabello, B. (2011), "Dynamic stress analysis of the effect of an air blast wave on a stainless steel plate", Rensselaer Polytechnic Institute Hartford, Connecticut.
  28. Carter, A. (2017), "Department of defense accomplishments (2009-2016), taking the long view, investing for the future", The Acquisition Research Program.
  29. Chock, J.M.K. (1999), "Review of methods for calculating pressure profles of explosive air blast and its sample application", Masters Theses, Virginia Tech., Blacksburg, Virginia, Blacksburg, Virginia.
  30. Choubey, B., Dutta, S.C. and Hussain, M.A. (2022), "Effects of unconfined blast on strategic structures and its protective measures", Struct. Eng. Mech., 84(2), 167. https://doi.org/10.12989/sem.2022.84.2.167.
  31. Clutter, J. and Stahl, M. (2004), "Hydrocode simulations of air and water shocks for facility vulnerability assessments", J. Hazard. Mater., 106(1), 9-24. https://doi.org/10.1016/j.jhazmat.2003.09.003.
  32. Committee, A. (2010), Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineers.
  33. Committee, A.T. (1985), Design of Structures to Resist Nuclear Weapons Effects, American Society of Civil Engineers, Reston, VA.
  34. Construction, A.I.o.S. (1999), Specification for Structural Steel Buildings, American Institute of Steel Construction, American Institute of Steel Construction.
  35. Council, J.D.M. (2021), Department of Defense Additive Manufacturing Strategy, Department of Defense, Washington, DC.
  36. Council, N.R. (1995), Protecting Buildings from Bomb Damage: Transfer of Blast-Effects Mitigation Technologies from Military to Civilian Applications, National Academies Press.
  37. Cranz, C. (1925), Lehrbuch der Ballistik. I. Aeusere Ballistik. II. Innere Ballistik. III. Experimentelle Ballistik, Springer, Berlin.
  38. Dharaneepathy, M. (1993), Air Blast Effects on Shell Structures, Shodhganga.
  39. Ding, P. and Buijk, A. (2004), "Simulation of under water explosion using MSC. Dytran", Ann Arbor, 1001, 48105.
  40. Ding, Y., Song, X. and Zhu, H.T. (2017), "Probabilistic progressive collapse analysis of steel frame structures against blast loads", Eng. Struct., 147, 679-691. https://doi.org/10.1016/j.engstruct.2017.05.063.
  41. DoD, U. (2016), Unified Facilites Criteria (UFC 4-023-03) Design of Buildings to Resist Progressive Collapse.
  42. DoD, U. and Glossary, S. (2005), Department of Defense, Technology Readiness Assessment Deskbook.
  43. Draganic, H. and Sigmund, V. (2012), "Blast loading on structures", Technical Gazette, 19(3), 643-652.
  44. Duc Ngo, T. (2007), "Blast loading and blast effects on structures-an overview", Electr. J. Struct. Eng., (1), 76-91. https://doi.org/10.56748/ejse.671.
  45. Dusenberry, D.O. (2019), "Performance-based design is the future", Structure Magazine, the National Council of Structural Engineers Associations (NCSEA).
  46. Eichinger, W.E. (1985), "Mach stem modeling with spherical shock waves", Air Force Inst of Tech Wright-Patterson School of Engineering.
  47. Engineers, A. (2005), Unified Facilities Criteria (UFC 3-340-02) Structures to Resist the Effects of Accidental Explosions.
  48. Engineers, U.A. (1986), "TM5-855-1 Fundamentals of protective design for conventional weapons", Headquarters, Dept. of the Army, Washington DC.
  49. Erkmen, B. (2018), "Comparison of blast analysis methods for modular steel structures", Teknik Dergi, 29(2), 8253-8277.
  50. Ethridge, N. (1965), "A procedure for reading and smoothing pressure-time data from HE and nuclear explosions", Army, Ballistic Research Laboratories.
  51. Friedlander, F.G. (1946), "The diffraction of sound pulses I. Diffraction by a semi-infinite plane", Proc. Roy. Soc. London, Ser. A. Math. Phys. Sci., 186(1006), 322-344.
  52. Fu, F. (2013), "Dynamic response and robustness of tall buildings under blast loading", J. Constr. Steel Res., 80, 299-307. https://doi.org/10.1016/j.jcsr.2012.10.001.
  53. Fu, F. (2015), Advanced Modelling Techniques in Structural Design a Structural Equation Modeling Approach, Wiley Blackwell, Wiley.
  54. Fu, F. (2016), Structural Analysis and Design to Prevent Disproportionate Collapse, Taylor and Francis, CRC Press.
  55. Ganapa, S., Chakraborti, S., Krapivsky, P.L. and Dhar, A. (2020), "The Taylor-von Neumann-Sedov blast-wave solution: comparisons with microscopic simulations of a one-dimensional gas", arXiv preprint arXiv:2010.15868.
  56. Ganpule, S., Alai, A., Plougonven, E. and Chandra, N. (2013), "Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches", Biomech. Model. Mechanobiol., 12, 511-531. https://doi.org/10.1007/s10237-012-0421-8.
  57. Gelfand, B. and Silnikov, M. (2004), "Translation from Russian to English the Book" Blast effects caused by explosions", Eurpopean Research Office London, UK.
  58. Goel, M.D. and Matsagar, V.A. (2014), "Blast-resistant design of structures", Pract. Period. Struct. Des. Constr., 19(2), 04014007. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000188.
  59. Goel, M.D., Matsagar, V.A., Gupta, A.K. and Marburg, S. (2012), "An abridged review of blast wave parameters", Def. Sci. J., 62(5), 300-306. https://doi.org/10.14429/dsj.62.1149.
  60. GSA (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, the GSA Project Manager.
  61. Gunger, M. (1992), Progress on Tasks under the Sympathetic Detonation Program, WL/MN-TR-91-85, Orlando Technology, Shalimar, FL.
  62. Hao, H. and Li, J. (2015), "Simplified numeircal method for analysing blast induced structural responses", 2014 SEM Fall Conference and International Symposium on Intensive Loading and Its Effects.
  63. Hao, H., Wu, C., Li, Z. and Abdullah, A. (2006), "Numerical analysis of structural progressive collapse to blast loads".
  64. Harkrider, D.G. and Flinn, E.A. (1970), "Effect of crustal structure on Rayleigh waves generated by atmospheric explosions", Rev. Geophys., 8(3), 501-516. https://doi.org/10.1029/RG008i003p00501.
  65. Held, M. (1983), "Blast waves in free air", Propell. Explos. Pyrotech., 8(1), 1-7.
  66. Henrych, J. and Major, R. (1979), The Dynamics of Explosion and its Use Elsevier.
  67. Hetherington, J. and Smith, P. (2014), Blast and Ballistic Loading of Structures, CRC Press.
  68. Hibbitt, D., Karlsson, B. and Sorensen, P. (2013), Abaqus Analysis User's Guide, Dassault Systemes, Velizy-Villacoublay, France. 
  69. Hibbitt (2004), ABAQUS Analysis User's Manual, Pawtucket, USA.
  70. Hikida, S., Bell, R. and Needham, C. (1988), "The SHARC codes: documentation and sample problems", S-Cubed Technical Report SSS.
  71. Hinman, E. and Engineers, P.H.C. (2011), Blast Safety of the Building Envelope, Whole Building Design Guide.
  72. Hopkins-Brown, M.A. and Bailey, A. (1998), "AASTP-4 Chapter 2 (Explosion Effects) Part 1 (Blast)", Royal Military College of Science, Cranfield University.
  73. Hopkinson, B. (1915), British Ordnance Board Minutes 13565, The National Archives, Kew, UK, 11.
  74. Hyde, D.W. (1988), Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, 'Fundamentals of Protective Design for Conventional Weapons' (User's Guide). Army Engineer Waterways Experiment Station Vicksburg MS Structures Lab, The American Society of Civil Engineers.
  75. Hyde, D.W. (1991), CONWEP: Conventional Weapons Effects Program, US Army Engineer Waterways Experiment Station, USA, 2.
  76. Iqbal, J. and Ahmad, S. (2011), "Improving safety provisions of structural design of containment against external explosion", Proceedings of International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century.
  77. Ismail, S.M. (2023), "Evaluation and damage assessment of structures under blast loads", Master of Degree, Port Said University.
  78. Izadifard, R.A. and M. Foroutan (2010), "Blastwave parameters assessment at different altitude using numerical simulation", Turk. J. Eng. Environ. Sci., 34(1), 25-42. https://doi.org/10.3906/muh-0911-39.
  79. Jacques, E., Lloyd, A. and Saatcioglu, M. (2013), "Predicting reinforced concrete response to blast loads", Can. J. Civil Eng., 40(5), 427-444. https://doi.org/10.1139/L2012-014.
  80. Jeremic, R. and Bajic, Z. (2006), "An approach to determining the TNT equivalent of high explosives", Scientif.-Tech. Rev., 56(1), 58-62.
  81. Jeyarajan, S. and Liew, J.R. (2016), "Robustness analysis of 3D Composite buildings with semi-rigid joints and floor slab", Struct., 6, 20-29.
  82. Jin, Z., Yin, C., Chen, Y. and Hua, H. (2018), "Numerical study on the interaction between underwater explosion bubble and a moveable plate with basic characteristics of a sandwich structure", Ocean Eng., 164, 508-520. https://doi.org/10.1016/j.oceaneng.2018.07.001.
  83. Jones, H. and Miller, A. (1948), "The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation", Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci., 194(1039), 480-507. https://doi.org/10.1098/rspa.1948.0093.
  84. Karlos, V. and Solomon, G. (2013), Calculation of Blast Loads for Application to Structural Components, European Laboratory for Structural Assessment.
  85. Karlos, V., Solomos, G. and Larcher, M. (2016), "Analysis of the blast wave decay coefficient using the Kingery-Bulmash data", Int. J. Protect. Struct., 7(3), 409-429. https://doi.org/10.1177/2041419616659572.
  86. Kingery, C.N., Bulmash, G. and Muller, P. (1984), Blast Loading on Above-ground Barricaded Munition Storage Magazines, Ballistic Research Laboratories.
  87. Kinney, G. and Graham, K. (1985), Explosive Shocks in Air, Poringer-Verlag Berlin Heidelberg, Springer Science & Business Media, Springer Science & Business Media.
  88. Kinney, G.F. and Graham, K.J. (2013), Explosive Shocks in Air, Springer Science & Business Media.
  89. Koccaz, Z., Sutcu, F. and Torunbalci, N. (2008), "Architectural and structural design for blast resistant buildings", The 14th World Conference on Earthquake Engineering, Vol. 8, Beijing, October.
  90. Koothoor, D. (2020), Performance-Based Design, Structural Stalwarts, Structural Stalwarts Platform.
  91. Krauthammer, T. (2008), Modern Protective Structures, CRC Press.
  92. Lam, N.T.K., Mendis, P. and Ngo, T. (2004), "Response spectrum solutions for blast loading", Electr. J. Struct. Eng., 4, 28-44. https://doi.org/10.56748/ejse.439.
  93. Larcher, M. (2008), "Pressure-time functions for the description of air blast waves", JRC Technical Note 46829.
  94. Larcher, M. and Casadei, F. (2010), "Explosions in complex geometries-A comparison of several approaches", Int. J. Protect. Struct., 1(2), 169-196. https://doi.org/10.1260/2041-4196.1.2.169.
  95. Larcher, M., Casadei, F. and Solomos, G. (2014), "Simulation of blast waves by using mapping technology in EUROPLEXUS", Technical Note, PUBSY No. JRC91102, EUR Report, 26735.
  96. Le Pichon, A. (2010), Infrasound Monitoring for Atmospheric Studies, Springer Science & Business Media, Switzerland.
  97. Li, J. and Hao, H. (2013), "Numerical study of structural progressive collapse using substructure technique", Eng. Struct., 52, 101-113. https://doi.org/10.1016/j.engstruct.2013.02.016.
  98. Li, M., Zong, Z., Hao, H., Zhang, X., Lin, J. and Xie, G. (2019), "Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading", Eng. Struct., 185, 203-220. https://doi.org/10.1016/j.engstruct.2019.01.116.
  99. Li, Y. and Ma, S. (1992), Mechanics of Explosion, Science Press, Beijing.
  100. Li, Z. and Shi, Y. (2008), "Methods for progressive collapse analysis of building structures under blast and impact loads", Trans. Tianjin Univ., 14(5), 329-339.
  101. Lin, S.C., Yang, B., Kang, S.B. and Xu, S.Q. (2019), "A new method for progressive collapse analysis of steel frames", J. Constr. Steel Res., 153, 71-84. https://doi.org/10.1016/j.jcsr.2018.09.029.
  102. Lofquist, C. (2016), Response of Buildings Exposed to Blast Load-Method Evaluation, TVSM-5000.
  103. Lotfi, S. and Zahrai, S.M. (2018), "Blast behavior of steel infill panels with various thickness and stiffener arrangement", Struct. Eng. Mech., 65(5), 587-600. https://doi.org/10.12989/sem.2018.65.5.587.
  104. Low, H.Y. and Hao, H. (2001), "Reliability analysis of reinforced concrete slabs under explosive loading", Struct. Saf., 23(2), 157-178. https://doi.org/10.1016/S0167-4730(01)00011-X.
  105. Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004), "Analysis of building collapse under blast loads", Eng. Struct., 26(1), 63-71.
  106. Lukic, S., Draganic, H., Gazic, G. and Radic, I. (2020), "Statistical analysis of blast wave decay coefficient and maximum pressure based on experimental results", 16th International Conference on Structures Under Shock and Impact (SUSI 2020), August.
  107. Manual (1993), LS-DYNA3D Theoretical: LSTC Report 1018 Rev. 2, JO Hallquist, Livermore Software Technology Corporation, Livermore, CA.
  108. manual, K.U.S. (2007), LS-DYNA Keyword User's Manual, LSTC Co., Livermore, CA.
  109. Materiel, U.A. (1974), Engineering Design Handbook: Explosions in Air Part, One AD/A-003 817 (AMC Pamphlet AMCP 706- 181), Alexandria, Virginia.
  110. Mays, G. and Smith, P.D. (1995), "Blast effects on buildings: Design of buildings to optimize resistance to blast loading", Thomas Telford.
  111. Mazurkiewicz, L., Malachowski, J., Baranowski, P. and Damaziak, K. (2013), "Comparison of numerical testing methods in terms of impulse loading applied to structural elements", J. Theor. Appl. Mech., 51(3), 615-625.
  112. McGlaun, J.M., Thompson, S.L. and Elrick, M.G. (1990). "CTH: A three-dimensional shock wave physics code", Int. J. Impact Eng., 10(1-4), 351-360. https://doi.org/10.1016/0734-743X(90)90071-3.
  113. Miller, P. (2004), "Towards the modelling of blast loads on structures", University of Toronto.
  114. Mills, C. (1987), "The design of concrete structures to resist explosions and weapon effects", Proceedings of the 1st Int. Conference for Hazard Protection, Edinburgh.
  115. Moon, N.N. (2009), "Prediction of blast loading and its impact on buildings", National Institute of Technology.
  116. Mussa, M.H., Mutalib, A.A. and Hao, H. (2020), "Numerical formulation of PI diagrams for blast damage prediction and safety assessment of RC panels", Struct. Eng. Mech., 75(5), 607-620. https://doi.org/10.12989/sem.2020.75.5.607.
  117. Nassr, A.A., Razaqpur, A.G., Tait, M.J., Campidelli, M. and Foo, S. (2012), "Experimental performance of steel beams under blast loading", J. Perform. Constr. Facil., 26(5), 600-619.
  118. Naumyenko, I. and I. Petrovsky (1956), "The shock wave of a nuclear explosion", BOEH, CCCP.
  119. Neff, M.P. (1998), "A visual model for blast waves and fracture", National Library of Canada.
  120. Newmark, N. and Hansen, R. (1961), Design of Blast Resistant Structures, Shock Vibration Handbook.
  121. Ngo, T.D. (2005), "Behaviour of high strength concrete subject to impulsive loading", University of Melbourne.
  122. Nichols, A. (2007), Users Manual for ALE 3D, An Arbitrary Lagrange/Eulerian 3D Code System, Lawrence Livermore National Laboratory.
  123. Nie, X., Zhang, S., Jiang, T. and Yu, T. (2020), "The strong column-weak beam design philosophy in reinforced concrete frame structures: A literature review", Adv. Struct. Eng., 23(16), 3566-3591. https://doi.org/10.1177/1369433220933463.
  124. Olmati, P. (2013), "Monte Carlo analysis for the blast resistance design and assessment of a reinforced concrete wall", ECCOMAS Thematic Conference-COMPDYN 2013: 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Proceedings-An IACM Special Interest Conference, January.
  125. Olmati, P., Vamvatsikos, D. and Stewart, M.G. (2017), "Safety factor for structural elements subjected to impulsive blast loads", Int. J. Impact Eng., 106, 249-258. https://doi.org/10.1016/j.ijimpeng.2017.04.009.
  126. Oswald, C. and Bazan, M. (2014), "Comparison of SDOF analysis results to test data for different types of blast loaded components", Structures Congress 2014, April.
  127. PA Shirbhate, M.G. (2020), "A critical review of blast wave parameters and approaches for blast load mitigation", Archives of Computational Methods in Engineering.
  128. Pham, T. (2008), "An investigation of the interaction between RC panels and fixings under blast loading", 20th Australian Conference on the Mechanics of Structures and Materials.
  129. Pordel Maragheh, B., Jalali, A. and Mirhoseini Hezaveh, S.M. (2020), "Effect of initial local failure type on steel braced frame buildings against progressive collapse", Int. J. Eng., 33(1), 34-46. https://doi.org/10.5829/ije.2020.33.01a.05.
  130. Pourasil, M.B., Mohammadi, Y. and Gholizad, A. (2017), "A proposed procedure for progressive collapse analysis of common steel building structures to blast loading", KSCE J. Civil Eng., 21(6), 2186-2194. https://doi.org/10.1007/s12205-017-0559-0.
  131. Remennikov, A. (2007), "The state of the art of explosive loads characterization", Australian Earthquake Engineering Conference, University of Wollongong, Australia.
  132. Rose, T. (2003), Air3d User's Guide, RCMS, Crandfield University, UK.
  133. Sadovskyi, M. (1952), "Mechanical action of air shock waves of explosion, based on experimental data", Izd Akademiia Nauk SSSR, Moscow.
  134. Sandler, I. and Rubin, D. (1990), "FUSE calculations of far-field water shock including surface and bottom effects", Weidlinger Assoc. Tech. Rep. for SAIC.
  135. Sedov, L.I. (1946), "Propagation of strong shock waves", J. Appl. Math. Mech., 10, 241-250.
  136. Sedov, L.I. (2014), Foundations of the Non-Linear Mechanics of Continua: International Series of Monographs in Interdisciplinary and Advanced Topics in Science and Engineering, Vol. 1, Elsevier.
  137. Sharaf, T., Ismail, S., Elghandour, M. and Turk, A. (2024), "Numerical study of low-rise composite steel frame responses to blast loading using direct simulation method", Struct. Concrete, https://doi.org/10.1002/suco.202400363.
  138. Sharaf, T., Ismail, S.M., Elghandour, M. and Turk, A.A. (2023), "Damage evaluation of a three-story composite steel frame subjected to external explosion", Port-Said Eng. Res. J., 27(3), 1-24.
  139. Shi, Y., Li, Z.X. and Hao, H. (2010), "A new method for progressive collapse analysis of RC frames under blast loading", Eng. Struct., 32(6), 1691-1703. https://doi.org/10.1016/j.engstruct.2010.02.017.
  140. Siddiqui, J.I. and Ahmad, S. (2007), "Impulsive loading on a concrete structure", Proc. Inst. Civil Eng.-Struct. Build., 160(4), 231-241. https://doi.org/10.1680/stbu.2007.160.4.231.
  141. Sideri, J., Mullen, C.L., Gerasimidis, S. and Deodatis, G. (2017), "Distributed column damage effect on progressive collapse vulnerability in steel buildings exposed to an external blast event", J. Perform. Constr. Facil., 31(5), 04017077. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001065.
  142. Song, B.I., Sezen, H. and Giriunas, K.A. (2010), "Experimental and analytical assessment on progressive collapse potential of two actual steel frame buildings", Structures Congress 2010, 1171-1182.
  143. Song, X. (2020), "Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method", Struct. Saf., 87, 102000. https://doi.org/10.1016/j.strusafe.2020.102000.
  144. Sorensen, A. and McGill, W.L. (2011), "What to look for in the aftermath of an explosion? A review of blast scene damage observables", Eng. Fail. Anal., 18(3), 836-845. https://doi.org/10.1016/j.engfailanal.2010.12.010.
  145. Sung, S. and Ji, H. (2022), "An SDOF model of a four-sided fixed RC wall having an opening for blast response simulation", Struct. Eng. Mech., 84(5), 675-684. https://doi.org/10.12989/sem.2022.84.5.675.
  146. Swisdak, M.M. (1994), Simplified Kingery Airblast Calculations, Naval Surface Warfere Center, Arlington.
  147. Talaat, M., Yehia, E., Mazek, S.A., Genidi, M.M. and Sherif, A.G. (2022), "Finite element analysis of RC buildings subjected to blast loading", Ain Shams Eng. J., 13(4), 101689. https://doi.org/10.1016/j.asej.2021.101689.
  148. Taylor, G.I. (1950a), "The formation of a blast wave by a very intense explosion I. Theoretical discussion", Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci., 201(1065), 159-174. https://doi.org/10.1098/rspa.1950.0049.
  149. Taylor, G.I. (1950b), "The formation of a blast wave by a very intense explosion II. The atomic explosion of 1945", Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci., 201(1065), 175-186. https://doi.org/10.1098/rspa.1950.0050.
  150. Team, E. and Galon, P. (2016), "Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading", User's Manual 2.
  151. Teich, M., Warnstedt, P. and Gebbeken, N. (2012), "Influence of negative phase loading on cable net facade response", J. Arch. Eng., 18(4), 276-284. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000083.
  152. Ullah, A., Ahmad, F., Jang, H.W., Kim, S.W. and Hong, J.W. (2017), "Review of analytical and empirical estimations for incident blast pressure", KSCE J. Civil Eng., 21(6), 2211-2225. https://doi.org/10.1007/s12205-016-1386-4.
  153. Vannucci, P., Masi, F. and Stefanou, I. (2017), "A comparative study on the effects of blast actions on a monumental structure", Doctoral Dissertation, UVSQ-ENPC.
  154. Von Neumann, J. (1963), Theory of Games, Astrophysics, Hydrodynamics and Meteorology, Pergamon Press.
  155. Voyiadjis, G.Z. (2021), Handbook of Damage Mechanics, Springer.
  156. Wang, F., Yang, J. and Pan, Z. (2020), "Progressive collapse behaviour of steel framed substructures with various beam-column connections", Eng. Fail. Anal., 109, 104399. https://doi.org/10.1016/j.engfailanal.2020.104399.
  157. Wang, H., Cheng, Y.S., Liu, J. and Gan, L (2016), "The fluid-Solid interaction dynamics between underwater explosion bubble and corrugated sandwich plate", Shock Vib., 2016(1), 6057437. https://doi.org/10.1155/2016/6057437.
  158. Wang, X.H., Zhang, S.R., Wang, C., Cui, W., Cao, K.L. and Fang, X. (2020), "Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion", Eng. Struct., 209, 109996. https://doi.org/10.1016/j.engstruct.2019.109996.
  159. Wilkins, M., Squier, B. and Halperin, B. (1964), The Equation of State of PBX 9404 and LX 04-01: UCRL-7797, Lawrence Radiation Laboratory, USA.
  160. Wong, M.B. (2011). "Plastic analysis and design of steel structures", Monash University, Australia, Butterworth-Heinemann.
  161. Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
  162. Yandzio, E. and Gough, M. (1999), Protection of Buildings Against Explosions, Steel Construction Institute, UK.
  163. Young, Y.L., Liu, Z. and Xie, W. (2009), "Fluid-structure and shock-bubble interaction effects during underwater explosions near composite structures", J. Appl. Mech., 76(5), 051303. https://doi.org/10.1115/1.3129718.
  164. Zhang, C., Gholipour, G. and Mousavi, A.A. (2019), "Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading", Eng. Struct., 181, 124-142. https://doi.org/10.1016/j.engstruct.2018.12.014.
  165. Zhang, X., Duan, Z. and Zhang, C. (2008), "Numerical simulation of dynamic response and collapse for steel frame structures subjected to blast load", Trans. Tianjin Univ., 14(S1), 523-529.