DOI QR코드

DOI QR Code

Determination of formability behavior of steel used in ships by various methods

  • Dursun Murat Sekban (Department of Marine Engineering Operations, Karadeniz Technical University) ;
  • Ecren Uzun Yaylaci (Faculty of Fisheries, Recep Tayyip Erdogan University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • Received : 2024.09.07
  • Accepted : 2024.10.08
  • Published : 2024.10.25

Abstract

Metal-based materials used in ships are built by welding plates and profiles of various sizes and shapes together. Although various methods are currently used during the production of ships, studies are ongoing on alternative welding methods. When alternative methods are examined, it is seen that friction stir welding (FSW) is advantageous in applying plate-type materials and obtaining high mechanical properties after application. In this study, FSW was applied to the steel used in ships, and after the application, hardness, tensile, and bending tests were performed, and mechanical properties were determined. Afterward, the bending test results, which are of great importance for the formability of welded structures, were transferred to finite element analysis (FEA) and multilayer perceptron (MLP) models, and the data obtained in these models were mutually analyzed with the mechanical test data. As a result of the analyses, it was determined that models with appropriate results obtained with experimental data could be created after both FEA and MLP, and thus the bending behavior of welded structures could be determined without the need for experimental data.

Keywords

Acknowledgement

We would like to thank Professor Gencaga Purcek (Mechanical Engineering Department, Karadeniz Technical University) for sharing his laboratory facilities.

References

  1. Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2023a), "The contact problem of a functionally graded layer under the effect of gravity", Z. Angew. Math. Mech., 103, e202200560. https://doi.org/10.1002/zamm.202200560. 
  2. Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2023b), "A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force", J. Mech. Mater. Struct., 18(1), 125-141. https://doi.org/10.2140/jomms.2023.18.125. 
  3. ANSYS APDL (2023), ANSYS Contact Technology Guide, Ansys Inc., Canonsburg, Pennsylvania, USA. 
  4. Ashrafi, H., Shamanian, M., Emadi, R. and Ahl Sarmadi, M. (2019), "Effect of welding parameters on the microstructure and tensile properties of Friction Stir-Welded DP600 steel", SAE Int. J. Mater. Manuf., 12(3), 165-178. 
  5. Buffa, G., Hua, J., Shivpuri, R. and Fratini, L. (2006), "A continuum based fem model for friction stir welding-model development", Mater. Sci. Eng. A, 419(1), 389-396. https://doi.org/10.1016/j.msea.2005.09.040. 
  6. Cavaliere, P., Squillace, A. and Panella, F. (2008), "Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding", J. Mater. Proc. Technol., 200(1-3), 364-372. https://doi.org/10.1016/j.jmatprotec.2007.09.050. 
  7. Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Shi, F. and Le, D.N. (2017), "Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm", Struct. Eng. Mech., 63(4), 429-438. https://doi.org/10.12989/sem.2017.63.4.429. 
  8. Cheepurupalli, N.R., Selvaraj, S., Muthadi, S.R., Subbu, L.S.P., Jayahari, L. and Fallah, M.H. (2024), "Wear parametric optimization of FSW parameters on Al alloy using MLP technique", E3S Web Conf., 552, 01085. https://doi.org/10.1051/e3sconf/202455201085. 
  9. Chen, C.M. and Kovacevic, R. (2003), "Finite element modeling of friction stir welding-thermal and thermomechanical analysis", Int. J. Mach. Tools Manuf., 43(13), 1319-1326. https://doi.org/10.1016/S0890-6955(03)00158-5. 
  10. Cunha, P.H.C.P.D., Lemos, G.V.B., Bergmann, L., Reguly, A., Santos, J.F.D., Marinho, R.R. and Paes, M.T.P. (2019), "Effect of welding speed on friction stir welds of GL E36 shipbuilding steel", J. Mater. Res. Technol., 8(1), 1041-1051. https://doi.org/10.1016/j.jmrt.2018.07.014. 
  11. DarAssi, M. (2021), "Convective stability of CO2 sequestration in a porous medium", Nonlin. Dyn. Syst. Theory, 21(2), 179-192. 
  12. DarAssi, M.H. and Hadji, L. (2014), "Analysis of the interplay between sedimentation and thermophoresis in the presence of convection in colloidal suspensions", Fluid. Eng. Div. Summer Meet., 46247, V01DT32A001. https://doi.org/10.1115/FEDSM2014-21078. 
  13. DarAssi, M.H. and Safi, M.A. (2021), "Analysis of an SIRS epidemic model for a disease geographic spread", Nonlin. Dyn. Syst. Theory, 21(1), 56-67. 
  14. Emami, S., Saeid, T. and Abdollah-zadeh, A. (2019), "Effect of friction stir welding parameters on the microstructure and microtexture evolution of SAF 2205 stainless steel", J. Alloy. Compound., 810, 151797. https://doi.org/10.1016/j.jallcom.2019.151797. 
  15. Ericsson, M. and Sandstrom, R. (2003), "Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG", Int. J. Fatig., 25(12), 1379-1387. https://doi.org/10.1016/S0142-1123(03)00059-8. 
  16. Fujii, H., Cui, L., Nakata, K. and Nogi, K. (2008), "Mechanical properties of friction stir welded carbon steel joints-friction atir welding with and without transformation", Weld. World, 52(9), 75-81. https://doi.org/10.1007/BF03266672. 
  17. Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K. and Nogi, K. (2006), "Friction stir welding of carbon steels", Mater. Sci. Eng. A, 429(1-2), 50-57. https://doi.org/10.1016/j.msea.2006.04.118. 
  18. Gite, R.A., Loharkar, P.K. and Shimpi, R. (2019), "Friction stir welding parameters and application: A review", Mater. Today Proc., 19, 361-365. https://doi.org/10.1016/j.matpr.2019.07.613. 
  19. Goel, P., Mohd, A.W., Sharma, N., Siddiquee, A.N. and Khan, Z.A. (2019), "Effects of welding parameters in friction stir welding of stainless steel and aluminum", Advances in Industrial and Production Engineering: Select Proceedings of FLAME 2018, Singapore. https://doi.org/10.1007/978-981-13-6412-9_75. 
  20. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Yaylaci, E.U. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037. 
  21. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Yaylaci, E.U., Ay, S., ... & Sen, A. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: Finite element study", Injury, 53(12), 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003. 
  22. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E, 89(1), 013014. https://doi.org/10.1103/PhysRevE.89.013014. 
  23. Hakim, S.J.S. and Razak, H.A. (2013), "Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779. 
  24. Husain, M.M., Sarkar, R., Pal, T.K., Prabhu, N. and Ghosh, M. (2015), "Friction stir welding of steel: Heat input, microstructure, and mechanical property co-relation", J. Mater. Eng. Perform., 24(9), 3673-3683. https://doi.org/10.1007/s11665-015-1652-5. 
  25. Karami, S., Jafarian, H., Eivani, A.R. and Kheirandish, S. (2016), "Engineering tensile properties by controlling welding parameters and microstructure in a mild steel processed by friction stir welding", Mater. Sci. Eng. A, 670, 68-74. https://doi.org/10.1016/j.msea.2016.06.008. 
  26. Kim, Y.G., Kim, J.S. and Kim, I.J. (2014), "Effect of process parameters on optimum welding condition of DP590 steel by friction stir welding", J. Mech. Sci. Technol., 28(12), 5143-5148. https://doi.org/10.1007/s12206-014-1138-7. 
  27. Konkol, P.J., Mathers, J.A., Johnson, R. and Pickens, J.R. (2003), "Friction stir welding of HSLA-65 steel for shipbuilding", J. Ship Prod., 19(03), 159-164. https://doi.org/10.5957/jsp.2003.19.3.159. 
  28. Lakshminarayanan, A.K. and Balasubramanian, V. (2011), "Understanding the parameters controlling friction stir welding of AISI 409M ferritic stainless steel", Metal. Mater. Int., 17(6), 969-981. https://doi.org/10.1007/s12540-011-6016-6. 
  29. Lemos, G.V.B., Cunha, P.H.C.P., Nunes, R.M., Bergmann, L. and Clarke, T. (2018), "Residual stress and microstructural features of friction-stir-welded GL E36 shipbuilding steel", Mater. Sci. Technol., 34(1), 95-103. https://doi.org/10.1080/02670836.2017.1361148. 
  30. Li, H., Yang, S., Zhang, S., Zhang, B., Jiang, Z., Feng, H., Han, P. and Li, J. (2017), "Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654", Mater. Des., 118, 207-217. https://doi.org/10.1016/j.matdes.2017.01.034. 
  31. Liu, F., Hovanski, Y., Miles, M., Sorensen, C. and Nelson, T. (2018), "A review of friction stir welding of steels: Tool, material flow, microstructure, and properties", J. Mater. Sci. Technol., 34(1), 39-57. https://doi.org/10.1016/j.jmst.2017.10.024. 
  32. Mahmoudiniya, M., Kokabi, A.H., Goodarzi, M. and Kestens, L.A. (2020), "Friction stir welding of advanced high strength dual phase steel: Microstructure, mechanical properties and fracture behavior", Mater. Sci. Eng. A, 769, 138490. https://doi.org/10.1016/j.msea.2019.138490. 
  33. Malik, V., Sanjeev, N.K. and Bajakke, P. (2020), "Review on modelling of friction stir welding using finite element approach and significance of formulations in simulation", Int. J. Manuf. Res., 15(2), 107-135. https://doi.org/10.1504/ijmr.2020.106851. 
  34. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471. 
  35. Mishra, R.S. and Ma, Z.Y. (2005), "Friction stir welding and processing", Mater. Sci. Eng.: R: Rep., 50(1-2): 1-78. https://doi.org/10.1016/j.mser.2005.07.001. 
  36. Mysliwiec, P., Kubit, A. and Szawara, P. (2023), "Optimization of 2024-T3 Aluminum alloy friction stir welding using random forest, XGBoost, and MLP machine learning techniques", Mater., 17(7), 1452. https://doi.org/10.3390/ma17071452. 
  37. Oner, E., Sabano, B.S., Yaylaci, E.U., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", Z. Angew. Math. Mech., 102(2), e202100287. https://doi.org/10.1002/zamm.202100287. 
  38. Oner, E., Uzun Yaylaci, E. and Yaylaci, M. (2024), "Multimethod examination of contact mechanics in orthotropic layers under gravity", Mech. Mater., 195, 105036. https://doi.org/10.1016/j.mechmat.2024.105036. 
  39. Pankaj, P., Tiwari, A., Dhara, L.N. and Biswas, P. (2022), "Multiphase CFD simulation and experimental investigation of friction stir welded high strength shipbuilding steel and aluminum alloy", CIRP J. Manuf. Sci. Technol., 39, 37-69. https://doi.org/10.1016/j.cirpj.2022.07.001. 
  40. Saeid, T., Abdollah-zadeh, A., Assadi, H. and Malek Ghaini, F. (2008), "Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel", Mater. Sci. Eng. A, 496(1-2), 262-268. https://doi.org/10.1016/j.msea.2008.05.025. 
  41. Sekban, D.M., Aktarer, S.M. and Purcek, G. (2019), "Friction stir 2elding of low-carbon shipbuilding steel plates: Microstructure, mechanical properties, and corrosion behavior", Metall. Mater. Trans. A, 50, 4127-4140. https://doi.org/10.1007/s11661-019-05324-8. 
  42. Sekban, D.M., Uzun Yaylaci, E., Ozdemir, M.E., Ozturk, S., Yaylaci, M. and Panda, S.K. (2024), "Formability behavior of AH-32 shipbuilding steel strengthened by friction stir process", Theor. Appl. Fract. Mech., 132, 104485. https://doi.org/10.1016/j.tafmec.2024.104485. 
  43. Shrivastava, A., Krones, M. and Pfefferkorn, F.E. (2015), "Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum", CIRP J. Manuf. Sci. Technol., 9, 159-168. https://doi.org/10.1016/j.cirpj.2014.10.001. 
  44. Terzi, M., Guvercin, Y., Ates, S.M, Sekban, D.M. and Yaylaci, M. (2020), "Effect of different abutment materials on stress distribution in peripheral bone and dental implant system", Sigma J. Eng. Nat. Sci., 38(3), 1515-1527. 
  45. Thomas, W.M., Staines, D.G., Norris, I.M. and de Frias, R. (2003), "Friction stir welding tools and developments", Weld World, 47(11), 10-17. https://doi.org/10.1007/BF03266403. 
  46. Thompson, M.K. and Thompson, J.M. (2017), ANSYS Mechanical APDL for Finite Element Analysis, Butterworth-Heinemann. 
  47. Tiwari, A., Pankaj, P., Biswas, P. and Rao, A.G. (2019), "Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints", Int. J. Adv. Manuf. Technol., 103, 1989-2005. https://doi.org/10.1007/s00170-019-03618-0. 
  48. Turichin, G., Kuznetsov, M., Tsibulskiy, I. and Firsova, A. (2017), "Hybrid Laser-Arc welding of the high-strength shipbuilding steels: Equipment and technology", Phys. Procedia, 89, 156-163. https://doi.org/10.1016/j.phpro.2017.08.005. 
  49. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035. 
  50. Uzun Yaylaci, E., Ozdemir, M.E., Guvercin, Y., Ozturk, S. and Yaylaci, M. (2023a), "Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM", Adv. Nano Res., 15(6), 567-577. https://doi.org/10.12989/anr.2023.15.6.567. 
  51. Uzun Yaylaci, E., Yaylaci, M., Ozdemir, M.E., Terzi, M. and Ozturk, S. (2023b), "Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks", Adv. Nano Res., 15(2), 165-174. https://doi.org/10.12989/anr.2023.15.2.165. 
  52. Venkatesh, K.M., Arivarsu, M., Manikandan, M. and Arivazhagan, N. (2018), "Review on friction stir welding of steels", Mater. Today Proc., 5(5), 13227-13235. https://doi.org/10.1016/j.matpr.2018.02.313. 
  53. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661. 
  54. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325. 
  55. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 99-210. https://doi.org/10.12989/cac.2021.27.3.199. 
  56. Yaylaci, M., Oner, E., Adiyaman, G., Ozturk, S., Uzun Yaylaci, E. and Birinci, A. (2023), "Analyzing of continuous and discontinuous contact problems of a functionally graded layer: Theory of elasticity and finite element method", Mech. Bas. Des. Struct. Mach., 52(8), 5720-5738. https://doi.org/10.1080/15397734.2023.2262562. 
  57. Yaylaci, M., Sengul Sabano, B., O zdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401. 
  58. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585. 
  59. Zagane, M.E.S, Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M. and Uzun Yaylaci, E. (2023a), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635. 
  60. Zagane, M.E.S., Abdelmadjid, M., Yaylaci, M., Abderahmen, S., Uzun Yaylaci, E. (2023b), "Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)", Struct. Eng. Mech., 88(6), 583-588. https://doi.org/10.12989/sem.2023.88.6.583. 
  61. Zhang, H., Zhang, Z. and Chen, J. (2005), "The finite element simulation of the friction stir welding process", Mater. Sci. Eng. A, 403(1-2), 340-348. https://doi.org/10.1016/j.msea.2005.05.052.