DOI QR코드

DOI QR Code

Parametric studies of cyclic behavior of bar damper and its effect on steel frames

  • Kambiz Cheraghi (Department of Civil Engineering, Faculty of Engineering, Razi University) ;
  • Mehrzad TahamouliRoudsari (Department of Civil Engineering, Kermanshah Branch, Islamic Azad University) ;
  • Reza Aghayari (Department of Civil Engineering, Faculty of Engineering, Razi University) ;
  • Kaveh Cheraghi (Department of Mechanical Engineering, Engineering Faculty, Razi University)
  • Received : 2024.08.03
  • Accepted : 2024.10.07
  • Published : 2024.10.25

Abstract

In this study, the cyclic behavior of Bar Damper (BD) and its effect on the seismic performance of the steel frame was investigated using numerical and analytical methods. Initially, the calibrated model was used to conduct parametric studies on the cyclic behavior of the damper. The purpose of parametric studies was to provide equations for calculating effective and elastic stiffness, ultimate strength, and energy dissipation using its diameter and height. The impact of BD on the steel frame was examined in the second section of the research. In this section, studies were conducted using pushover analysis to investigate the impact of BD on the elastic stiffness, energy absorption, ductility, and strength of the frame. The results demonstrated that increasing the height of the BDs resulted in higher energy dissipation. However, reducing the height and increasing the diameter increased effective stiffness, yield strength, and elastic stiffness. The EVDR results showed that the diameter of the damper has a negligible effect on it, and its value increases with the decrease in height. In the best case, the addition of BD causes a 23% increase in energy dissipation and a 60% increase in frame ductility.

Keywords

References

  1. Aghlara, R. and Tahir, M.M. (2018), "A passive metallic damper with replaceable steel bar components for earthquake protection of structures", Eng. Struct., 159, 185-197. https://doi.org/10.1016/j.engstruct.2017.12.049.
  2. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures", J. Constr. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004. 0
  3. AISC (2016), ANSI/AISC 360-16: Specification for Structural Steel Buildings.
  4. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016.
  5. Bagheria, S., Hadidi, A. and Alilou, A. (2011), "Heightwise distribution of stiffness ratio for optimum seismic design of steel frames with Metallic-Yielding dampers", Procedia Eng., 14, 2891-2898. https://doi.org/10.1016/j.proeng.2011.07.364.
  6. Bayat, M. and Abdollahzade, G. (2011), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Lat. Am. J. Solid. Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004.
  7. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
  8. Chaboche, J.L. (1989), "Constitutive equations for cyclic plasticity and cyclic viscoplasticity", Int. J. Plast., 5(3), 247-302. https://doi.org/10.1016/0749-6419(89)90015-6.
  9. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
  10. Cheraghi, K., Tahamouliroudsari, M. and Kiasat, S. (2023a), "Numerical and analytical investigation of U-shape dampers and its effect on steel frames", Struct., 55, 498-509. https://doi.org/10.1016/j.istruc.2023.06.037.
  11. Cheraghi, K., Tavana, M.H. and Aghayari, R. (2023b), "Investigating the effect of low-yield yielding dampers on the seismic behavior of steel frames", Periodica Polytechnica Civil Eng., 67(3), 925-935. https://doi.org/10.3311/PPci.21804.
  12. Council B.S.S. (2006), NEHRP Recommended Provisions: Design Examples (FEMA 451), Federal Emergency Management Agency, Washington, DC.
  13. Ene, D., Kishiki, S., Yamada, S., Jiao, Y., Konishi, Y., Terashima, M. and Kawamura, N. (2016), "Experimental study on the bidirectional inelastic deformation capacity of U-shaped steel dampers for seismic isolated buildings", Earthq. Eng. Struct. Dyn., 45(2), 173-192. https://doi.org/10.1002/eqe.2621.
  14. Farsi, A., Amiri, H.R. and Dehghan Manshadi, S.H. (2021), "An innovative C-shaped yielding metallic dampers for steel structures", Struct., 34, 4254-4268. https://doi.org/10.1016/j.istruc.2021.08.069.
  15. Fema, A. (2005), 440, Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA-440, Redwood City, 7(9), 11
  16. Garivani, S., Aghakouchak, A.A. and Shahbeyk, S. (2016), "Numerical and experimental study of comb-teeth metallic yielding dampers", Int. J. Steel Struct., 16(1), 177-196. https://doi.org/10.1007/s13296-016-3014-z.
  17. Ghaedi, K., Ibrahim, Z. and Javanmardi, A. (2018), "A new metallic bar damper device for seismic energy dissipation of civil structures", IOP Conf. Ser.: Mater. Sci. Eng., 431, 122009. https://doi.org/10.1088/1757-899x/431/12/122009.
  18. Ghaedi, K., Ibrahim, Z., Javanmardi, A. and Rupakhety, R. (2021), "Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads", J. Earthq. Eng., 25(2), 300-318. https://doi.org/10.1080/13632469.2018.1515796.
  19. Ghamari, A., Thongchom, C., Putra Jaya, R. and Sithole, T. (2023), "Utilizing low yield point steel to improve the behavior of the I-Shaped shear links as dampers", Build., 13(2), 554. https://doi.org/10.3390/buildings13020554.
  20. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  21. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  22. Guo, W., Li, S., Zhai, Z., Li, Z., Tan, S. and Ding, F. (2022), "Seismic performance of a new S-shaped mild steel damper with varied yielding cross-sections", J. Build. Eng., 45, 103508. https://doi.org/10.1016/j.jobe.2021.103508.
  23. He, H., Wang, X. and Zhang, X. (2016), "Energy-dissipation performance of combined low yield point steel plate damper based on topology optimization and its application in structural control", Adv. Mater. Sci. Eng., 2016(1), 5654619. https://doi.org/10.1155/2016/5654619.
  24. Hibbeler, R.C. and Tan, K.H. (2006), Structural Analysis, Pearson Prentice Hall Upper Saddle River.
  25. Hibbitt, K. and Sorensen, I. (2014), ABAQUS/Standard User's Manual Volumes I-III and ABAQUS CAE Manual. Version.
  26. Hsu, H.L. and Halim, H. (2017), "Improving seismic performance of framed structures with steel curved dampers", Eng. Struct., 130, 99-111. https://doi.org/10.1016/j.engstruct.2016.09.063.
  27. Hsu, H.L. and Halim, H. (2018), "Brace performance with steel curved dampers and amplified deformation mechanisms", Eng. Struct., 175, 628-644. https://doi.org/10.1016/j.engstruct.2018.08.052.
  28. Javidan, M.M. and Kim, J. (2022), "A ductile steel damper-brace for low-damage framed structures", Steel Compos. Struct., 44(3), 311-323. https://doi.org/10.12989/scs.2022.44.3.311.
  29. Javidana, M.M. and Kim, J. (2022), "Steel hexagonal damper-brace system for efficient seismic protection of structures", Steel Compos. Struct., 45(5), 683-695. https://doi.org/10.12989/scs.2022.45.5.683.
  30. Ji, X., Hikino, T., Kasai, K. and Nakashima, M. (2013), "Damping identification of a full-scale passively controlled five-story steel building structure", Earthq. Eng. Struct. Dyn., 42(2), 277-295. https://doi.org/10.1002/eqe.2208.
  31. Kahrizi, M. and Tahamouliroudsari, M. (2021), "Experimental and numerical investigation of the parameters affecting the behavior of steel frames with masonry infill walls anchored with the ADAS yielding damper", Eur. J. Environ. Civil Eng., 25(5), 773-794. https://doi.org/10.1080/19648189.2018.1543057.
  32. Lie, W., Wu, C., Luo, W., Wu, C., Li, C., Li, D. and Wu, C. (2022), "Cyclic behaviour of a novel torsional steel-tube damper", J. Constr. Steel Res., 188, 107010. https://doi.org/10.1016/j.jcsr.2021.107010.
  33. Lotfi Mahyari, S., Tajmir Riahi, H. and Hashemi, M. (2019), "Investigating the analytical and experimental performance of a pure torsional yielding damper", J. Constr. Steel Res., 161, 385-399. https://doi.org/10.1016/j.jcsr.2019.07.010.
  34. O zkaynak, H. (2017), "The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame", Struct. Eng. Mech., 61(4), 483-496. https://doi.org/10.12989/sem.2017.61.4.483.
  35. Park, J.H., Kim, J. and Min, K.W. (2004), "Optimal design of added viscoelastic dampers and supporting braces", Earthq. Eng. Struct. Dyn., 33(4), 465-484. https://doi.org/10.1002/eqe.359.
  36. Ponzo, F.C., Di Cesare, A., Nigro, D., Vulcano, A., Mazza, F., Dolce, M. and Moroni, C. (2012), "Jet-Pacs project: Dynamic experimental tests and numerical results obtained for a steel frame equipped with hysteretic damped chevron braces", J. Earthq. Eng., 16(5), 662-685. https://doi.org/10.1080/13632469.2012.657335.
  37. Rousta, A.M. (2023), "Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers", Struct. Eng. Mech., 87(1), 69-84. https://doi.org/10.12989/sem.2023.87.1.069.
  38. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  39. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006.
  40. Tahamouliroudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers", Struct. Durab. Hlth. Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927.
  41. Tahamouliroudsari, M., Eslamimanesh, M.B., Entezari, A.R., Noori, O. and Torkaman, M. (2018), "Experimental assessment of retrofitting RC moment resisting frames with ADAS and TADAS yielding dampers", Struct., 14, 75-87. https://doi.org/10.1016/j.istruc.2018.02.005.
  42. Tahamouliroudsari, M., Torkaman, M. and Soroush, F. (2020), "Experimental and numerical investigation of axial load effects on the seismic behavior of steel moment-resisting frames and buckling-restrained knee-braced frames", Asian J. Civil Eng., 21(3), 449-461. https://doi.org/10.1007/s42107-019-00209-y.
  43. Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "A proposal for energy dissipative braces with U-shaped steel strips", J. Constr. Steel Res., 154, 110-122. https://doi.org/10.1016/j.jcsr.2018.11.031.
  44. Vafadar, F., Broujerdian, V. and Ghamari, A. (2022), "Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys", Struct. Eng. Mech., 82(1), 107-120. https://doi.org/10.12989/sem.2022.82.1.107.
  45. Xu, L.Y., Nie, X. and Fan, J.S. (2016), "Cyclic behaviour of lowyield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002.
  46. Zhang, C., Aoki, T., Zhang, Q. and Wu, M. (2015), "The performance of low-yield-strength steel shear-panel damper with without buckling", Mater. Struct., 48(4), 1233-1242. https://doi.org/10.1617/s11527-013-0228-9.
  47. Zhao, J.Z., Tao, M.X., Wu, Z.H. and Zhuang, L.D. (2022), "Experimental and numerical study on bent shear panel damper made of BLY160 steel", Eng. Struct., 260, 114229. https://doi.org/10.1016/j.engstruct.2022.114229.
  48. Zheng, J., Li, A. and Guo, T. (2015), "Analytical and experimental study on mild steel dampers with non-uniform vertical slits", Earthq. Eng. Eng. Vib., 14(1), 111-123. https://doi.org/10.1007/s11803-015-0010-9.
  49. Zhou, Q. and Lu, X. (2004), "Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers", Struct. Eng. Mech., 17(2), 187-201. https://doi.org/10.12989/sem.2004.17.2.187.