DOI QR코드

DOI QR Code

Fabrication of high-entropy alloy superconducting thin films via pulsed laser deposition technique

  • Soon-Gil Jung (Department of Physics Education, Sunchon National University) ;
  • Jeongwon Noh (Department of Physics, Sungkyunkwan University) ;
  • Yoonseok Han (Department of Physics, Sungkyunkwan University) ;
  • Woo Seok Choi (Department of Physics, Sungkyunkwan University) ;
  • Won Nam Kang (Department of Physics, Sungkyunkwan University) ;
  • Tuson Park (Department of Physics, Sungkyunkwan University)
  • Received : 2024.07.01
  • Accepted : 2024.07.31
  • Published : 2024.09.30

Abstract

We fabricate high-entropy alloy (HEA) Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 superconducting (SC) thin films via a pulsed laser deposition method. Two targets are prepared using arc melting, each followed by sintering at different temperatures: 550℃ and 700℃ for 12 hours. The films, HEA550 and HEA700, are deposited on c-cut Al2O3 substrates at a substrate temperature of 520℃, using the targets sintered at 550℃ and 700℃, respectively. The SC transition temperature (Tc) of HEA700 is 6.88 K, slightly higher than that of HEA550 (= 6.27 K). Both films exhibit similar upper critical field (Hc2) at 0 K, with 11.34 T for HEA550 and 11.40 T for HEA700. Notably, HEA700 exhibits a large critical current density (Jc) of approximately 4.4 MA/cm2 and 3.5 MA/cm2 at 2.0 K and 4.2 K, respectively, accompanying by a predominance of normal point pinning. These results indicate that the targets prepared by arc melting are beneficial for achieving a large Jc in HEA SC thin films, thus providing new avenues for improving SC critical properties of HEA thin films for their practical applications.

Keywords

Acknowledgement

This paper was supported by Sunchon National University Research Fund in 2023 (Grant number: 2023-0272).

References

  1. J. -W. Yeh, S. -K. Chen, S. -J. Lin, J. -Y. Gan, T. -S. Chin, T. -T. Shun, C. -H. Tsau, and S. -Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Adv. Eng. Mater., vol. 6, pp. 299-303, 2004.
  2. E. P. George, D. Raabe, and R. O. Ritchie, "High-entropy alloys," Nat. Rev. Mater., vol. 4, pp. 515-534, 2019.
  3. X. Wang, W. Guo, and Y. Fu, "High-entropy alloys: Emerging materials for advanced functional applications," J. Mater. Chem. A, vol. 9, pp. 663-701, 2021.
  4. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, "High-entropy alloy: challenges and prospects," Mater. Today, vol. 19, pp. 349-362, 2016.
  5. D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts," Acta Mater., vol. 122, pp. 448-511, 2017.
  6. W. Xiong, A. X. Y. Guo, S. Zhan, C. -T. Liu, and S. C. Cao, "Refractory high-entropy alloys: A focused review of preparation methods and properties," J. Mater. Sci. Technol., vol. 142, pp. 196-215, 2023.
  7. M. -H. Tsai and J. -W. Yeh, "High-entropy alloys: A critical review," Mater. Res. Lett., vol. 2, pp. 107-123, 2014.
  8. S. -G. Jung, Y. Han, J. H. Kim, R. Hidayati, J. -S. Rhyee, J. M. Lee, W. N. Kang, W. S. Choi, H. -R. Jeon, J. Suk, and T. Park, "High critical current density and high-tolerance superconductivity in high-entropy alloy thin films," Nat. Commun., vol. 13, pp. 3373, 2022.
  9. Z. Cheng, J. Sun, X. Gao, Y. Wang, J. Cui, T. Wang, and H. Chang, "Irradiation effects in high-entropy alloys and their applications," J. Alloy. Compd., vol. 930, pp. 166768, 2023.
  10. P. Kozelj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jaglicic, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinsek, "Discovery of a superconducting high-entropy alloy," Phys. Rev. Lett., vol. 113, pp. 107001, 2014.
  11. L. Sun and R. J. Cava, "High-entropy alloy superconductors: Status, opportunities, and challenges," Phys. Rev. Mater., vol. 3, pp. 090301, 2019.
  12. F. von Rohr, M. J. Winiarski, J. Tao, T. Klimczuk, and R. J. Cava, "Effect of electron count and chemical complexity in theTa-Nb-Hf-Zr-Ti high-entropy alloy superconductor," Proc. Natl. Acad. Sci. USA, vol. 113, pp. E7144-E7150, 2016.
  13. J. Kitagawa, S. Hamamoto, and N. Ishizu, "Cutting edge of high-entropy alloy superconductors from the perspective of materials research," Metals, vol. 10, pp. 1078, 2020.
  14. G. Kim, M. -H. Lee, J. H. Yun, P. Rawat, S. -G. Jung, W. Choi, T. -S. You, S. J. Kim, and J. -S. Rhyee, "Strongly correlated and strongly coupled s-wave superconductivity of the high entropy alloy Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 compound," Acta Mater., vol. 186, pp. 250-256, 2020.
  15. J. H. Kim, R. Hidayati, S. -G. Jung, Y. A. Salawu, H. -J. Kim, J. H. Yun, and J. -S. Rhyee, "Enhancement of critical current density and strong vortex pinning in high entropy alloy superconductor Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 synthesized by spark plasma sintering," Acta Mater., vol. 232, pp. 117971, 2022.
  16. L. Gao, T. Ying, Y. Zhao, W. Cao, C. Li, L. Xiong, Q. Wang, C. Pei, J. -Y. Ge, H. Hosono, and Y. Qi, "Fishtail effect and the vortex phase diagram of high-entropy alloy superconductor," Appl. Phys. Lett., vol. 120, pp. 092602, 2020.
  17. J. Kim, S. -G. Jung, Y. Han, J. H. Kim, J. -S. Rhyee, S. Yeo, and T. Park, "Thermal driven gigantic enhancement in critical current density of high-entropy alloy superconductors," J. Mater. Sci. Technol., vol. 189, pp. 60-67, 2024.
  18. S. A. Uporov, R. E. Ryltsev, V. A. Sidorov, S. Kh Estemirova, E. V. Sterkhov, I. A. Balyakin, and N. M. Chtchelkatchev, "Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy," Intermetallics, vol. 140, pp. 107394, 2022.
  19. T. Seki, H. Arima, Y. Kawasaki, T. Nishizaki, Y. Mizuguchi, and J. Kitagawa, "Effect of annealing in eutectic high-entropy alloy superconductor NbScTiZr," J. Supercond. Nov. Magn., pp. 1-10, 2023. [https://doi.org/10.1007/s10948-023-06643-z].
  20. S. -G. Jung, Y. Han, J. H. Kim, R. Hidayati, J. -S. Rhyee, S. Kim, E. Mun, J. H. Choi, and T. Park, "Fabrication of high-entropy alloy superconducting wires by powder-in-tube method," J. Alloy. Compd., vol. 995, pp. 174816, 2024.
  21. D. Dew-Hughes, "The critical current of superconductors: an historical review," Low. Temp. Phys., vol. 27, pp. 713-722, 2001.
  22. D. Y. Bugoslavsky, A. Gurevich, D. M. Feldmann, and A. Polyanskii, "High-Tc superconducting materials for electric power applications," Nature, vol. 411, pp. 561-563, 2001.
  23. C. Yao and Y. Ma, "Superconducting materials: Challenges and opportunities for large-scale applications," iScience, vol. 24, pp. 102541, 2021.
  24. S. -G. Jung, W. K. Seong, and W. N. Kang, "Flux pinning mechanism in single-crystalline MgB2 thin films," J. Phys. Soc. Jpn., vol. 82, pp. 114712, 2013.
  25. S. -G. Jung, S. Shin, H. Jang, W. N. Kang, J. H. Han, A. Mine, T. Tamegai, and T. Park, "Manipulating superconducting phases via current-driven magnetic states in rare-earth-doped CaFe2As2," NPG Asia Mater., vol. 10, pp. 156-162, 2018.
  26. S. -G. Jung, H. Jang, S. Shin, T. Park, and W. N. Kang, "Critical current density in the heterogeneous high-Tc superconductor Ca1-xLaxFe2As2," J. Korean Phys. Soc., vol. 72, pp. 515-521, 2018.
  27. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, "Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects," Phys. Rev., vol. 147, pp. 295-302, 1966.
  28. A. M. Toxen and M. J. Burns, "Critical fields of thin superconducting films. II. Mean free path effects in indium-tin alloy films," Phys. Rev., vol. 130, pp. 1808-1815, 1963.
  29. D. Dew-Hughes, "Flux pinning mechanisms in type-II superconductors," Phil. Mag., vol. 30, pp. 293-305, 1974.
  30. Y. Shi, M. Gough, A. R. Dennis, J. H. Durrell, and D. A. Cardwell, "Distribution of the superconducting critical current density within a Gd-Ba-Cu-O single grain," Supercond. Sci. Technol., vol. 33, pp. 044009, 2020.
  31. S. X. Dou, V. Braccini, S. Soltanian, R. Klie, Y. Zhu, S. Li, X. L. Wang, and D. Larbalestier, "Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2," J. Appl. Phys., vol. 96, pp. 7549-7555, 2004.
  32. T. Matsushita, M. Kiuchi, A. Yamamoto, J. Shimoyama, and K. Kishio, "Essential factors for the critical current density in superconducting MgB2: connectivity and flux pinning by grain boundaries," Supercond. Sci. Technol., vol. 21, pp. 015008, 2008.
  33. Q. Ma, J. Peng, Z. Ma, F. Cheng, F. Lan, C. Li, Z. Yang, C. Liu, and Y. Liu, "Improved grain connectivity and critical current density in ex-situ MgB2 superconductors prepared by two-step sintering," Mater. Chem. Phys., vol. 204, pp. 62-66, 2018.