
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 29 No. 10, pp. 165-173, October 2024

https://doi.org/10.9708/jksci.2024.29.10.165

Towards Next Generation Game Development: A Comprehensive

Analysis of Game Engines Technologies

1)Soo Kyun Kim*, Iqbal Muhamad Ali**, Min Woo Ha***

*Professor, Dept. of Computer Engineering, Jeju National University, Jeju, Korea

**Student, Dept. of Computer Engineering, Jeju National University, Jeju, Korea

***Associate professor, College of Pharmacy, Jeju National University, Jeju, Korea

[Abstract]

Game engines are essential tools in game development, speeding up processes and simplifying the

integration of various modules like physics, graphics, animations, and AI. This study provides a

comprehensive overview of modern game engine technologies, including advanced rendering techniques,

graphics APIs, physics simulations, AI integration, audio systems, networking, VR/AR, and development

tools. It highlights recent advancements such as real-time ray tracing, physically based rendering,

machine learning for content generation and intelligent NPCs, cloud gaming, and novel input methods

like brain-computer interfaces. The paper also explores future directions, including enhanced

cross-platform support and new technologies that will drive the evolution of game engines. This analysis

serves as a valuable resource for developers, researchers, and industry professionals.

▸Key words: Real-time Ray Tracing, Physically Based Rendering, Temporal Anti-Aliasing,

Virtual Reality (VR) and Augmented Reality Workload, Game Engine Architecture

[요 약]

게임 엔진은 물리, 그래픽, 애니메이션, AI와 같은 다양한 모듈의 통합을 간소화하고 개발 속도

를 높이는 데 필수적인 도구이다. 본 연구는 현대 게임 엔진 기술에 대한 포괄적인 개요를 제공

하며, 고급 렌더링 기술, 그래픽 API, 물리 시뮬레이션, AI 통합, 오디오 시스템, 네트워킹, VR/AR

및 개발 도구를 다룬다. 또한, 실시간 레이 트레이싱, 물리 기반 렌더링, 콘텐츠 생성 및 지능형

NPC를 위한 머신러닝, 클라우드 게임, 뇌-컴퓨터 인터페이스와 같은 새로운 입력 방법 등 최신

발전 사항에 대해 분석한다. 본 논문은 게임 엔진의 발전을 이끌 미래의 방향성, 특히 플랫폼 간

지원 향상 및 신기술 도입에 대해 분석하고, 분석 결과는 개발자, 연구자 및 업계 전문가에게 유

용한 자료로 활용될 수 있다.

▸주제어: 실시간 레이 트레이싱, 물리 기반 렌더링 (PBR), 템포럴 안티앨리어싱 (TAA),

가상 현실 (VR) 및 증강 현실 (AR), 게임 엔진 아키텍처

∙First Author: Soo Kyun Kim, Corresponding Author: Min Woo Ha
 *Soo Kyun Kim (kimsk@jejunu.ac.kr), Dept. of Computer Engineering, Jeju National University
 **Iqbal Muhamad Ali (aliiqbal073@gmail.com), Dept. of Computer Engineering, Jeju National University
 ***Min Woo Ha (minuha@jejunu.ac.kr), College of Pharmacy, Jeju National University
∙Received: 2024. 07. 22, Revised: 2024. 09. 19, Accepted: 2024. 09. 25.

Copyright ⓒ 2024 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

166 Journal of The Korea Society of Computer and Information

I. Introduction

Game engines are foundational software

frameworks that power video game development

across platforms like PCs, gaming consoles, mobile

devices, and emerging technologies such as virtual

and augmented reality (VR/AR). These toolkits

include reusable components, tools, libraries, and

APIs, enabling developers to efficiently create

interactive gaming experiences. Initially, custom

software was created for each game, but as

complexity grew, the need for reusable frameworks

led to the development of game engines. These

engines allow developers to focus on game-specific

logic while leveraging a robust codebase for

common tasks like graphics rendering, physics

simulation, audio processing, scripting, input

handling, and resource management.

Fig. 1. Overview of Game Engine

Figure 1 presents a generalized overview of game

engine architecture, illustrating the core

components and systems that enable game

development. Over the years, game engines have

evolved significantly, incorporating advancements

in hardware, programming languages, and

development methodologies. Modern game engines

employ advanced rendering techniques like

real-time ray tracing and physically based

rendering (PBR), and use cutting-edge graphics

APIs like DirectX 12 and Vulkan for better

performance. Physics simulations provide realistic

representations of collisions, forces, and

movements.

Table 1 provides a summary of various game

engines, comparing them based on their licensing

models, programming languages, and extensibility.

This table helps illustrate the wide variety of

engines available to developers, emphasizing the

trade-offs in features and capabilities among

commercial and open-source options

No.
Game

Engine
License

Environment

Extensibility

Extensions

Programming

Language

1

Torque

Game

Engine

Commercial Very Good
Torque

Script, C++

2
Doom

Engine 3
Commercial Very Good

Scripting

Language,

C++

3
Unreal

Engine 2
Commercial Very Good

Scripting

Language,

C++

4 EasyWay
Open

Source
Poor Java

5

Sauerbra

ten

(Cube 2)

Open

Source
Good

Scripting

Language,

C++

6 Simulus
Open

Source
Poor C++

7

Simple

Direct

Engine

Open

Source
Poor C#

8
Ghost

Engine

Open

Source
Poor C++

9 Raydium
Open

Source
Poor C

10 Drome
Open

Source
Good C++

Table 1. Summary of Game Engines

AI and machine learning integration enable

intelligent NPCs, procedural content generation,

and player behavior modeling. Advanced audio

systems enhance the auditory experience, and

networking capabilities support various

architectures for cross-platform multiplayer

Towards Next Generation Game Development: A Comprehensive Analysis of Game Engines Technologies 167

experiences. Modern engines support VR/AR

natively, with features like motion tracking and

spatial mapping enhancing realism.

Game engines also offer powerful development

tools, such as visual scripting interfaces, asset

management systems, and level editing tools,

streamlining the development process and making

it accessible to non-programmers. This paper

provides an overview of game engine types and

technologies, exploring state-of-the-art techniques

and future directions, highlighting the cutting-edge

technologies shaping the future of game

development.

Several studies have explored modern game

engines and their evolution, focusing on individual

features such as rendering techniques, physics

simulations, or platform support. For example,

prior research by Vohera et al. [8] and Maggiorini

et al.[9] delved into the architecture and

capabilities of game engines, providing valuable

insights into their technical frameworks. However,

these studies often focus on either high-level

overviews or specific aspects of engines like

graphics rendering or physics without offering a

comprehensive feature comparison across the

latest versions of multiple engines

This paper provides a detailed comparative

analysis of the latest versions of leading game

engines, including Unity, Unreal Engine, and

CryEngine. Different from the pror work, our

research integrates a thorough feature-by-feature

comparison across multiple engines, focusing on

advancements in rendering, physics, AI, and VR/AR

support.

II. Preliminaries

Using the integrated development environment

(IDE) Unity, users can design models, create 3D

animations, and develop video games. Compatible

with both macOS and Windows, Unity supports

game development for various platforms, including

desktop systems (Windows, macOS, Linux), mobile

devices (iOS, Android, Windows Phone), and

consoles. Users select the appropriate Software

Development Kit (SDK) for the target platform [1].

Unity supports scripting in C#, JavaScript, and Boo,

and is developed using C++ and C#. Key features

include Nvidia's PhysX physics engine, the

Mechanism animation system, a built-in terrain

editor, and MLAPI for multiplayer networking [2].

Unity employs MonoDevelop for integrated code

editing and supports assets from Blender, 3ds Max,

Cinema 4D, and Adobe Photoshop. Notable games

developed with Unity include Assassin's Creed:

Identity, Temple Run Trilogy, Call of Duty Mobile,

and Escape Plan.

Features Unity (2023)

Unreal

Engine 5

(2023)

Cry Engine

5.7 (2023)

Supported

Platforms

PC, Console

Mobile Web

VR/AR

PC,

Console

Mobile

Web

VR/AR

PC, Console

VR/AR

Scripting

Languages

C#,

JavaScript,

Boo

C++ C++, Lua

Rendering

Real-time

Ray

Tracing,

PBR

Real-time

Ray

Tracing,

PBR

Physically

Based

Shading,

CryLighting

Physics

Engine

Nvidia

PhysX

Chaos

Physics
CryPhysics

VR/AR

Support
Yes Yes Yes

Licensing

Model

Freemium

(Paid tiers)

Free with

royalty

Free with

royalty

Table 2. Feature Comparison of Latest Version of

Game Engines

1.1 Unreal Engine

Developed by Epic Games, Unreal Engine (UE)

debuted in 1998, with the latest iteration, version

4.20, released in 2018. Created in C++, UE supports

PC, mobile, console, and VR platforms [3]. It uses

object-oriented programming and reusable libraries

to streamline game development, focusing on

design and gameplay rather than technical aspects.

UE employs Disney's Physically Based Rendering

for visual realism and advanced algorithms for

168 Journal of The Korea Society of Computer and Information

graphics. It achieves high frame rates and realism

using Level of Detail (LoD) techniques [4]. Notable

games developed with Unreal Engine include

Dragon Ball Fighter Z, Ark: Survival Evolved, Street

Fighter V, Borderlands 3, and Fortnite.

1.2 GameMaker

Originally created as Animo in 1991 and later

rebranded by YOYO Games, GameMaker is popular

for creating 2D cross-platform games. Using C#

and C++, it is beginner-friendly and supports

platforms like Android, iOS, PlayStation, Xbox,

Windows Desktop, HTML5, Windows UWP, and

Nintendo Switch [5]. GameMaker 2, released in

2017, offers licenses from $39 to $799. Notable

games include Katana Zero, Hyper Light Drifter,

Shovel Knight: Treasure Trove, Hotline Miami, and

Undertale.

1.3 CryEngine

Developed by Crytek, CryEngine powers the Far

Cry series. Using Lua and C++ for scripting, it

supports Windows, Linux, PSVR, Xbox One, and

PlayStation 4 [6]. CryEngine efficiently manages

cross-platform changes and provides source code

access for extensive customization [7]. Renowned

for its graphics and performance capabilities,

notable games using CryEngine include Ryse: Son

of Rome, Prey, Kingdom Come: Deliverance, and

the Crysis series.

In addition to the detaile discussion of various

game engines, Table [2] provides a feature

comparison of the latest versions of the engines,

that includes Unity, Unreal Engine and CryEngine.

This comparison focuses on key aspects such as

supported platforms, scripting languages, rendering

capabilities, physics engines, and VR/AR

support.The table aims to highlight the differences

in capabilities and features, offering insights into

how these engines meet diverse development needs

in modern game development.

III. The Proposed Scheme

Numerous studies [8, 9, 10] have explored

various game engines. Our research proposes a

universal framework for a game engine,

encompassing several key components illustrated in

Figure 2. As described by Gregory in his work on

game engine architecture [11], the modular

structure of a game engine ensures flexibility in

developing for various platforms

Fig. 2. A Generalized overview of Game Engine Architecture

The framework supports various platforms,

including Xbox, PlayStation, Nintendo, PCs running

Microsoft Windows and Linux, as well as iOS and

Android devices [12]. The Target Hardware

component identifies the specific platform for game

deployment. Third-party software provides reusable

components, reducing development time and costs,

and allowing developers to focus on impactful game

features. A Platform Independence Layer (PIL)

ensures uniform functionality across diverse

systems, shielding the engine’s mechanics from

platform-specific data.

At the core of a game engine are fundamental

systems such as asynchronous file I/O,

mathematical libraries, memory management, and

string hashing. The Resource Manager provides a

standardized interface to access game assets like

textures, models, fonts, and other data. Rendering,

whether 2D or 3D, focuses on the rapid display of

visual elements. Visual effects such as particle

Towards Next Generation Game Development: A Comprehensive Analysis of Game Engines Technologies 169

systems, dynamic shadows, and light mapping

enhance the game's visual appeal.

Most games feature 2D graphics within a 3D

environment, including GUIs, in-game menus, and

HUDs. Technologies like On-Game Cinematics or

Full Motion Video enhance the front-end

experience. Physics and collision engines simulate

physical interactions, ensuring objects react

appropriately to forces and collisions. Animations,

whether 2D using sprites or 3D using skeletal

systems, are crucial for realistic movement.

The audio system is vital for immersion,

generating sounds and music in response to game

events. Networking capabilities are essential for

multiplayer games, supporting formats like

split-screen, networked, single-screen, and

massively multiplayer online games (MMOG).

Gameplay involves core actions and rules within

the virtual environment [13], including player

objectives, character skills, and object capabilities.

Scripting systems in some engines facilitate the

rapid development of these gameplay elements.

Developers and designers work together to enhance

the game with dynamic player characters, multiple

camera systems, AI-controlled NPCs, weaponry,

vehicles, and other subsystems.

IV. Current State of the Art

Techniques for Game Engines

1. Rendering Techniques

1.1 Real-time ray tracing

Game engines are increasingly adopting real-time

ray tracing technologies, such as NVIDIA RTX and

AMD Ray Tracing, to enhance visual fidelity with

realistic lighting, shadows, and reflections [14].

Real-time ray tracing simulates light behavior as it

interacts with virtual objects, enabling accurate

rendering of effects like global illumination,

reflections, refractions, and soft shadows. This

technology revolutionizes photorealistic graphics by

eliminating the need for pre-computed lighting

solutions and allowing dynamic lighting changes in

real-time.

1.2 Physically based rendering (PBR)

PBR techniques simulate light and materials

accurately, resulting in realistic visuals. PBR [15]

uses properties like albedo, roughness, and metallic

values to determine surface interactions with light,

ensuring material consistency across various

lighting conditions. This enhances visual coherence

and allows for efficient, realistic texture mapping,

reducing the need for manual adjustments.

1.3 Temporal anti-aliasing (TAA)

Advanced anti-aliasing techniques like TAA

improve image quality by reducing aliasing artifacts

and enhancing overall visual clarity. Aliasing refers

to jagged edges in rendered graphics [16]. TAA

leverages information from multiple frames to

smooth these artifacts, resulting in cleaner images.

This technique is particularly effective in games

with dynamic camera movements, providing

consistent anti-aliasing quality.

2. Graphics APIs

2.1 Low-level APIs

Modern game engines support low-level graphics

APIs like DirectX 12 and Vulkan, which provide

better performance, increased parallelism, and

lower CPU overhead compared to their

predecessors. These low-level APIs offer more

direct control over graphics hardware, enabling

developers to optimize resource usage and achieve

higher frame rates. Additionally, they support

features like explicit multi-GPU rendering,

asynchronous compute, and advanced scheduling

techniques, which can further enhance

performance on modern hardware.

2.2 Cross-platform compatibility

Game engines are designed to support multiple

graphics APIs, ensuring cross-platform

compatibility, and enabling developers to target a

170 Journal of The Korea Society of Computer and Information

wide range of hardware and platforms. This

includes support for APIs like DirectX, Vulkan,

Metal (for Apple devices), and OpenGL, allowing

game developers to build and deploy their games

across various operating systems and devices

without significant code changes.

3. Physics and Dynamics

3.1 Rigid body dynamics

Game engines use advanced physics engines to

simulate rigid body dynamics, enabling realistic

representation of object collisions, forces, and

movements. These engines calculate interactions

between rigid bodies, considering factors such as

mass, inertia, friction, and restitution. This allows

for accurate simulations of physical phenomena

like collisions and explosions, enhancing the

immersion of virtual environments.

3.2 Soft body dynamics

Some game engines also support soft body

dynamics, allowing for realistic deformation of

materials like cloth, fluids, and deformable objects.

Techniques such as finite element methods,

mass-spring systems, or position-based dynamics

model the behavior of these materials. Soft body

dynamics are crucial for realistic representations

of character clothing, hair, and other flexible

objects, adding realism to virtual environments.

4. Artificial Intelligence (AI) and Machine Learning

4.1 Pathfinding and navigation

Game engines use advanced pathfinding

algorithms and navigation meshes to enable

realistic and efficient movement of non-player

characters (NPCs) and agents. Pathfinding

algorithms, such as A* or Dijkstra's algorithm [17],

calculate optimal paths for NPCs in complex

environments, while navigation meshes represent

navigable areas within the game world. These

techniques ensure natural movement and obstacle

avoidance, enhancing the game's believability.

Additionally, game engines are integrating

machine learning capabilities to develop more

intelligent and adaptive AI systems for NPCs,

procedural content generation, and player behavior

modeling [18].

5. Audio and Sound

5.1 Spatial audio

Game engines support advanced spatial audio

technologies, such as 3D positional audio and audio

occlusion, to create immersive auditory

experiences. Spatial audio positions sound sources

accurately in a 3D environment, simulating effects

like distance attenuation, Doppler shift, and

occlusion. These features enhance the sense of

presence and immersion in games. Many game

engines integrate with audio middleware solutions

like FMOD, Wwise, and Fabric, which offer tools for

sound design, music implementation, and audio

asset management, including real-time parameter

control, audio mixing, and environmental audio

effects [19]. This integration streamlines audio

workflows within the game engine.

6. Networking and Multiplayer

6.1 Client-server architectures

Game engines support various networking

architectures, including client-server models,

peer-to-peer networking, and hybrid approaches,

enabling multiplayer experiences across different

platforms. Client-server architectures, commonly

used for large-scale multiplayer games, rely on a

dedicated server to manage the game state and

synchronize data between clients [20]. Peer-to-peer

networking allows direct client communication,

reducing the need for a central server. Hybrid

approaches combine both architectures for scalable

and robust multiplayer solutions.

6.2 Dedicated server support

Game engines often provide dedicated server

solutions for efficient management and hosting of

multiplayer sessions. Dedicated servers ensure

consistent performance, reliable data

synchronization, and centralized management of

game logic and rules. They also support features like

Towards Next Generation Game Development: A Comprehensive Analysis of Game Engines Technologies 171

matchmaking, player rankings, and leaderboards,

enhancing the multiplayer experience.

7. Virtual and Augmented Reality (VR/AR)

7.1 AR integration

Many game engines support virtual and

augmented reality platforms, such as Oculus Rift,

HTC Vive, and ARKit/ARCore, facilitating immersive

VR and AR experiences. This includes support for

VR/AR rendering techniques, input handling, and

performance optimizations.

7.2 VR/AR-specific features

Game engines implement features like motion

tracking, stereoscopic rendering, and spatial

mapping to enhance VR and AR applications. Motion

tracking ensures accurate user movement tracking

for natural interactions. Stereoscopic rendering

creates depth perception by generating separate

images for each eye, providing a realistic 3D

experience. Spatial mapping allows AR applications

to integrate virtual objects into the real world,

enabling interactions within physical spaces.

8. Editor and Development Tools

8.1 Visual scripting

Game engines often provide visual scripting

tools, allowing developers to create and modify

game logic using a visual, node-based interface,

reducing the barrier to entry for

non-programmers. Visual scripting environments

enable developers to construct game behaviors,

interactions, and event handling through a

graphical representation of nodes and connections,

abstracting away the complexities of traditional

coding. This approach can significantly streamline

the development process and make game

programming more accessible to a broader range

of developers.

Technology Advantages Disadvantages

Real-time

Ray Tracing

- Highly realistic

lighting,shadows,

and reflections

Dynamic lighting

changes in

real-time

- High computational

cost

Requires modern

GPUs for optimal

performance

Physically

Based

Rendering

(PBR)

Consistent

material

appearance across

lighting conditions

Realistic texture

mapping

- Requires careful

calibration of

material properties

- Can be

resource-intensive

for complex scenes

Artificial

Intelligence

(AI)

- Enables

intelligent NPCs

and dynamic

content generation

- Enhances player

immersion

- Complex to

implement

- Can increase

development time

and computational

load

Virtual/Aug

mented

Reality

(VR/AR)

- Immersive

experience

- Expands

possibilities for

user interaction

- Requires

specialized hardware

(e.g., VR headsets)

- Can cause motion

sickness in some

users

Machine

Learning

for NPCs

and

Content

More personalized

gaming

experiences

- Can automate

procedural content

generation

- Requires large

datasets and

computational power

- Difficult to predict

behavior in complex

scenarios

Table 3. Advantages and Disadvantages of

Advance Game Deveolpment Technologies

Table 3 summarizes the advantages and

disadvantages of several advanced technologies

shaping the future of game development.

8.2 Asset management

Game engines offer robust asset management

systems for organizing, importing, and processing

game assets such as 3D models, textures,

animations, and audio files. These systems include

tools for asset versioning, dependency tracking,

and automated processing, ensuring efficient and

consistent asset handling. They support

industry-standard file formats and seamless

integration with various content creation tools.

172 Journal of The Korea Society of Computer and Information

8.3. Level editing and world-building

Game engines provide powerful level editors and

world-building tools for creating game

environments, placing objects, and defining

gameplay mechanics. These tools feature real-time

previewing, terrain sculpting, object placement,

lighting setup, and scripting integration, allowing

developers to visualize and iterate on their designs

effectively.

V. Conclusions

In conclusion, the game engine industry has

made significant strides by integrating cutting-edge

technologies that enhance game development and

deliver immersive experiences. Recent

advancements include improvements in rendering,

AI, cloud-based technologies, and VR/AR

capabilities. Looking forward, future developments

are expected to focus on real-time ray tracing,

machine learning integration, cloud solutions, and

cross-platform development. Innovations such as

enhanced VR/AR experiences, novel input methods,

and continuous technological evolution will

continue to transform interactive entertainment,

allowing developers to create more sophisticated

gaming experiences.

This paper provides a valuable comparative

analysis of modern game engines, offering

developers and researchers insights into the most

suitable tools for their needs. By highlighting

current trends such as real-time ray tracing, AI,

and VR/AR, it sheds light on the future direction of

game development. However, the study is limited by

its reliance on existing documentation, which may

not fully capture proprietary features, and the

rapidly changing landscape of game engine

technologies. Future research could focus on

detailed case studies or performance benchmarks

to further enrich this analysis.

ACKNOWLEDGEMENT

“This work was supported by the 2024 education,

research and student guidance grant funded by Jeju

National University”

REFERENCES

[1] Singh S, Kaur A. Game Development using Unity Game Engine.

In2022 3rd International Conference on Computing,Analytics and

Networks (ICAN) 2022 Nov 18 (pp. 1-6). IEEE . DOI: 10.1109/

ICAN56228.2022.10007155

[2] Creighton RH. Unity 3D game development by example: A

Seat-of-your-pants manual for building fun, groovy little games

quickly. Packt Publishing Ltd; 2010 Sep 24. https://dl.acm.org/

doi/abs/10.5555/1941162

[3] Ahamed S, Das A, Tanjib SM, Eity QN. Study of an application

development environment based on unity game engine. AIRCC's

International Journal of Computer Science and Information

Technology. 2020 Feb 1:43-62. DOI: 10.5121/ijcsit.2020.12103

[4] Torres-Ferreyros CM, Festini-Wendorff MA, Shiguihara-Juárez

PN. Developing a videogame using unreal engine based on a four

stages methodology. In2016 IEEE ANDESCON 2016 Oct 19 (pp.

1-4). IEEE. 10.1109/ANDESCON.2016.7836249

[5] Christopoulou E, Xinogalos S. Overview and Comparative

Analysis of Game Engines for Desktop and Mobile Devices.

International Journal of Serious Games. 2017 Dec 1;4(4). DOI:

https://doi.org/10.17083/ijsg.v4i4.194

[6] Johnson C. Learning Basic Programming Concepts with Game

Maker. International Journal of Computer Science Education in

Schools. 2017 May;1(2):n2. DOI: 10.21585/ijcses.v1i2.5

[7] Cossu SM. Game Development With Game Maker Studio 2.

London: Apress Media LLC. 2019. https://dl.acm.org/doi/abs/10.

5555/3378992

[8] Vohera, C., Chheda, H., Chouhan, D., Desai, A. and Jain, V.,

2021, July. Game engine architecture and comparative study of

different game engines. In 2021 12th International Conference on

Computing Communication and Networking Technologies

(ICCCNT) (pp. 1-6). IEEE. DOI: 10.1109/ICCCNT51525.2021.

9579618

[9] Maggiorini D, Ripamonti LA, Zanon E, Bujari A, Palazzi CE.

SMASH: A distributed game engine architecture. In2016 IEEE

Symposium on Computers and Communication (ISCC) 2016 Jun

27 (pp. 196-201). IEEE. DOI: 10.1109/ISCC.2016.7543739

[10] Zarrad A. Game engine solutions. Simulation and Gaming. 2018

Feb 14:75-87. https://dl.acm.org/doi/abs/10.5555/2621961

Towards Next Generation Game Development: A Comprehensive Analysis of Game Engines Technologies 173

[11] Gregory J. Game engine architecture. AK Peters/CRC Press; 2018

Jul 20. https://dl.acm.org/doi/abs/10.5555/2621961

[12] Wang, L., Shi, X. and Liu, Y., 2023. Foveated rendering: A

state-of-the-art survey. Computational Visual Media, 9(2),

pp.195-228. DOI: doi.org/10.1007/s41095-022-0306-4

[13] Westera W, Van der Vegt W, Bahreini K, Dascalu M, Van

Lankveld G. Software components for serious game

development. In10th European Conf. on Games Based Learning

2016 Oct 6 (pp. 765-772). Reading UK, Paisley, Scotland.

[14] Deng Y, Ni Y, Li Z, Mu S, Zhang W. Toward real-time ray

tracing: A survey on hardware acceleration and microarchitecture

techniques. ACM Computing Surveys (CSUR). 2017 Aug

30;50(4):1-41. DOI: https://doi.org/10.1145/3104067

[15] Shao K, Tang Z, Zhu Y, Li N, Zhao D. A survey of deep reinforcement

learning in video games. arXiv preprint arXiv:1912.10944. 2019

Dec 23 DOI 10.48550/arXiv.1912.10944

[16] Joshi A, Sharma M, Al Zubi J. Artificial Intelligence in Games:

Transforming the Gaming Skills. InDeep Learning in Gaming and

Animations 2021 Dec 7 (pp. 103-122). CRC Press. eBook

ISBN9781003231530.

[17] Westera W, Prada R, Mascarenhas S, Santos PA, Dias J,

Guimarães M, Georgiadis K, Nyamsuren E, Bahreini K, Yumak

Z, Christyowidiasmoro C. Artificial intelligence moving serious

gaming: Presenting reusable game AI components. Education

and Information Technologies. 2020 Jan;25:351-80. DOI

https://doi.org/10.1007/s10639-019-09968-2

[18] Roberts P, editor. Game AI Uncovered: Volume One. CRC Press;

2024 Feb 23. DOI: 10.1201/9781003323549

[19] Schijven MP, Kikkawa T. Is there any (artificial) intelligence

in gaming? Simulation & Gaming. 2022 Aug;53(4):315-6. DOI:

https://doi.org/10.1177/10468781221101685

[20] Andrejkovics Z. Exploring the Potential Implications of Artificial

Intelligence in Esports and related Video Games. International

Journal of eSports Studies. 2023 Jun;1:1-8. DOI : 10.59924/IJeSS.

2023.1.1

Authors

Soo Kyun Kim received Ph.D. in Computer

Science & Engineering Department of Korea

University, Seoul, Korea, in 2006. He joined

the Telecommunication R&D center at

Samsung Electronics Co., Ltd., from 2006

Game Engineering at Paichai University until 2020. He is

now a professor at the Department of Computer Engineering

at Jeju National University, Korea.

Iqbal Muhamad Ali is currently pursuing a

PhD in Computer Engineering at Jeju

National University, South Korea. He holds a

Masters in Computer Science from

COMSATS University Islamabad, Pakistan,

and has lectured at both COMSATS University Islamabad

and Hazara University, Mansehra. His research focuses on

Machine Learning, Digital Image Processing, and Computer

Vision.

Min Woo Ha received Ph.D. in

Pharmaceutical Synthetic Chemistry from

Seoul National University, College of

Pharmacy in Korea. She is an associate

professor at the College of Pharmacy, Jeju

National University, Korea. As a member of PSK (The

Pharmaceutical Society of Korea), KSOS (The Korean

Society of Organic Synthesis), and KSIEC (The Korean

Society of Industrial and Engineering Chemistry), she is

expanding her research scope into the fields of

pharmaceuticals and engineering chemistry through the

design and preparation of potential organic materials.

