DOI QR코드

DOI QR Code

A Particle-Grid Method for Efficient Sound Synthesis of Ocean Waves

  • Jong-Hyun Kim (College of Software and Convergence (Dept. of Design Technology), Inha University)
  • Received : 2024.08.16
  • Accepted : 2024.10.21
  • Published : 2024.10.31

Abstract

In this paper, we propose a technique that utilizes the physical properties of foam particles to synthesize foam sounds and efficiently control their size. A typical way to represent sound in physics-based simulation environments is to generate and synthesize virtual sounds. In particular, foam particles have a large number of particles, so synthesizing sounds using only particles is computationally expensive, and a way to reduce the amount of computation is to use spatial information, lattices. In this paper, we present a method for reliably mapping and clustering foam particles into a lattice space. Furthermore, we utilize this structure to control the loudness of the sound according to the location of the sound source and the audience. As a result, the method proposed in this paper proposes an efficient way to synthesize the sound of bubble particles, which utilizes the velocity and position of the bubble particles projected in the lattice space, and synthesizes the sound of bubble particles based on the position relationship of the audience and the directionality of the sound.

본 논문에서는 거품 입자의 물리적 속성을 활용하여 거품 사운드를 합성하고 크기를 효율적으로 제어할 수 있는 기법을 제안한다. 물리 기반 시뮬레이션 환경에서 사운드를 표현하는 대표적인 방법은 가상 사운드의 생성과 합성이다. 특히 거품 입자는 개수가 많기 때문에 입자만으로 사운드를 합성하는 것은 계산양이 크며, 이를 계산 양을 줄일 수 있는 방법은 공간(Spatial) 정보인격자를 이용하는 것이다. 본 논문에서는 거품 입자를 격자 공간으로 안정적으로 매핑하고 군집화하는 방법을 제시한다. 또한, 이 구조를 활용하여 사운드의 근원지와 청중의 위치 관계에 따라 사운드의 크기를 제어한다. 결과적으로 본 논문에서 제안하는 방법은 거품 입자의 사운드를 효율적으로 합성하는 방법을 제안한다. 이를 위해 격자 공간에 투영된 거품 입자의 속도와 위치를 활용하고, 청중의 위치 관계 및 사운드의 방향성을 기반으로 거품 입자의 사운드를 합성한다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00254695, Contribution Rate : 30%). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2022R1F1A1063180, Contribution Rate : 30%). This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2022-00155915, Artificial Intelligence Convergence Innovation Human Resources Development (Inha University)) (Contribution Rate: 40%)

References

  1. Mystakidis, Stylianos, "Metaverse," Encyclopedia 2, no. 1, pp. 486-497, 2022. DOI: 10.3390/encyclopedia2010031
  2. Zhao, Yuheng, Jinjing Jiang, Yi Chen, Richen Liu, Yalong Yang, Xiangyang Xue, and Siming Chen. "Metaverse: Perspectives from graphics, interactions and visualization." Visual Informatics 6, no. 1, pp. 56-67, 2022. DOI: 10.1016/j.visinf.2022.03.002
  3. Collins, Karen. "Game sound." An introduction to the history, theory, and practice of video game music and sound design, Cambridge, 2008.
  4. Bragg, William. "The world of sound". BoD-Books on Demand, 2022.
  5. Rayleigh, L. "On the pressure developed in a liquid during the collapse of a spherical cavity", Philosophical Magazine Series, vol. 6, no. 34, pp. 94-98, 1917. DOI: 10.1080/14786440808635681
  6. XVI, M. Minnaert. "On musical air-bubbles and the sounds of running water", London Edinburgh Dublin Philos. Mag. J. Sci vol. 16, pp. 235-248, 1933. DOI: 10.1080/14786443309462277
  7. Strasberg, M. "The pulsation frequency of nonspherical gas bubbles in liquids." The Journal of the Acoustical Society of America, vol. 25, no. 3, pp. 536-537, 1953. DOI: 10.1121/1.1907076
  8. Bolin, Karl, and Mats Abom. "Air-borne sound generated by sea waves." The Journal of the Acoustical Society of America 127, no. 5, pp. 2771-2779, 2010. DOI: 10.1121/1.3327815
  9. Etter, Paul C. "Underwater acoustic modeling and simulation". CRC press, 2018.
  10. Dahl, Peter H., James H. Miller, Douglas H. Cato, and Rex K. Andrew. "Underwater ambient noise." Acoustics Today, vol. 3, no. 1, pp. 23-33, 2007. DOI: 10.5772/intechopen.93057
  11. Leighton, Timothy. "The acoustic bubble". Academic press, 2012.
  12. Medwin, Herman, and Matthew M. Beaky. "Bubble sources of the Knudsen sea noise spectra." The Journal of the Acoustical Society of America, vol. 86, no. 3, pp. 1124-1130, 1989. DOI: 10.1121/1.398104
  13. Lu, N. Q., A. Prosperetti, and S. W. Yoon. "Underwater noise emissions from bubble clouds." IEEE journal of oceanic engineering, vol. 15, no. 4, pp. 275-281, 1990. DOI: 10.1109/48.103521
  14. Means, Steven L., and Richard M. Heitmeyer. "Low-frequency sound generation by an individual open-ocean breaking wave." The Journal of the Acoustical Society of America, vol. 110, no. 2, pp. 761-768, 2001. DOI: 10.1121/1.1379729
  15. Deane, Grant B., and M. Dale Stokes. "Model calculations of the underwater noise of breaking waves and comparison with experiment." The Journal of the Acoustical Society of America vol. 127, no. 6, pp. 3394-3410, 2010. DOI: 10.1121/1.3419774
  16. Bridson, Robert. "Fluid simulation for computer graphics". AK Peters/CRC Press, 2015.
  17. Osher, Stanley, Ronald Fedkiw, and K. Piechor. "Level set methods and dynamic implicit surfaces." Appl. Mech. Rev., vol. 57, no. 3, 2004. DOI: 10.1115/1.1760520
  18. Solenthaler, Barbara, and Renato Pajarola. "Density contrast SPH interfaces.", pp. 211-218, 2008. DOI: 10.2312/SCA/SCA08/211-218
  19. Boyd, Landon, and Robert Bridson. "MultiFLIP for energetic two-phase fluid simulation." ACM Transactions on Graphics (TOG), vol. 31, no. 2, pp. 1-12, 2012. DOI: 10.1145/2159516.2159522
  20. De Goes, Fernando, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. "Power particles: an incompressible fluid solver based on power diagrams." ACM Trans. Graph., vol. 34, no. 4, pp. 50, 2015. DOI: 10.1145/2766901
  21. Kim, Byungmoon. "Multi-phase fluid simulations using regional level sets." ACM Transactions on Graphics (TOG), vol. 29, no. 6, pp. 1-8, 2010. DOI: 10.1145/1882261.186619
  22. Li, Wei, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. "Efficient kinetic simulation of two-phase flows." ACM Transactions on Graphics, vol. 41, no. 4, pp. 114, 2022. DOI: 10.1145/3528223.3530132
  23. Popinet, Stephane. "Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries." Journal of computational physics, vol. 190, no. 2, pp. 572-600, 2003. DOI: 10.1016/S0021-9991(03)00298-5
  24. Dobashi, Yoshinori, Tsuyoshi Yamamoto, and Tomoyuki Nishita. "Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics." In ACM SIGGRAPH 2003 Papers, pp. 732-740, 2003. DOI: 10.1145/882262.88233
  25. Chadwick, Jeffrey N., and Doug L. James. "Animating fire with sound." ACM Transactions on Graphics (TOG), vol. 30, no. 4, pp. 1-8, 2011. DOI: 10.1145/2010324.1964979
  26. Liu, Shiguang, and Zhuojun Yu. "Sounding fire for immersive virtual reality." Virtual Reality, vol. 19, pp. 291-302, 2015. DOI: 10.1007/s10055-015-0271-7
  27. Yin, Qiang, and Shiguang Liu. "Sounding solid combustibles: non-premixed flame sound synthesis for different solid combustibles." IEEE transactions on visualization and computer graphics, vol. 24, no. 2, pp. 1179-1189, 2016. DOI: 10.1109/TVCG.2016.2642958
  28. Peltola, Leevi, Cumhur Erkut, Perry R. Cook, and Vesa Valimaki. "Synthesis of hand clapping sounds." IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1021-1029, 2007. DOI: 10.1109/TASL.2006.885924
  29. Nordahl, Rolf, Luca Turchet, and Stefania Serafin. "Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications." IEEE transactions on visualization and computer graphics, vol. 17, no. 9, pp. 1234-1244, 2011. DOI: 10.1109/TVCG.2011.30
  30. Wang, Kai, and Shiguang Liu. "Example-based synthesis for sound of ocean waves caused by bubble dynamics." Computer animation and virtual worlds, vol. 29, no. 3-4, pp. e1835, 2018. DOI: 10.1002/cav.1857