References
- K. Park, G. Jung, and H. Ahn, "A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting," The Korean Journal of BigData, vol. 9, no. 1, pp. 31-47, Jun. 2024. DOI: 10.36498/kbigdt.2024.9.1.31
- S. Bai, J. Z. Kolter and V. Koltun, "An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling," arXiv, Mar. 2018. DOI: 10.48550/arXiv.1803.01271
- J. A. Rusman, K. Chunady, S. T. Makmud, K. E. Setiawan, and M. F. Hasani, "Crude Oil Price Forecasting: A Comparative Analysis of ARIMA, GRU, and LSTM Models", IEEE 9th International Conference on Computing, Engineering, and Design (ICCED), 2023. DOI: 10.1109/ICCED60214.2023.10425576
- N. Dowlut, B. Gobin-Rahimbux, "Forecasting resort hotel tourism demand using deep learning techniques - A systematic literature review", Heliyon, vol. 9, no. 7, e18385, 2023. DOI: 10.1016/j.heliyon.2023.e18385
- J. Kim, Y. Yang, M. Oh, S. Lee, S. Kwon, and W. Cho, "Demand Prediction of Furniture Component Order Using Deep Learning Techniques", The Korean Journal of BigData, vol. 5, no. 2, pp. 111-120, Dec. 2020. DOI: 10.36498/kbigdt.2020.5.2.111
- H. Ahn, "Optimization of Multiclass Support Vector Machine Using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating," Journal of MIS Research, vol. 16, no. 3, pp. 161-177, Dec. 2014. DOI: 10.14329/isr.2014.16.3.161
- Y. Pethe and H. Das, "Feature Selection Using Genetic Algorithm for Software Fault Prediction," 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), pp. 1132-1137, Jun. 2024. DOI: 10.1109/ICAAIC60222.2024.10575523
- A. Alghamdi, "A Hybrid Method for Big Data Analysis Using Fuzzy Clustering, Feature Selection and Adaptive Neuro-Fuzzy Inference System Techniques: Case of Mecca and Medina Hotels in Saudi Arabia," Arabian Journal for Science & Engineering, vol. 48, no. 2, pp. 1693-1714, Feb. 2023. DOI: 10.1007/s13369-022-06978-0
- X. Li, C. Liu and Y. He, "Efficient Time Series Predicting with Feature Selection and Temporal Convolutional Network," 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET), pp. 141-145, Aug. 2021. DOI: 10.1109/CCET52649.2021.9544317
- W. Zha and Y. Ye, "An Aero-Engine Remaining Useful Life Prediction Model Based on Feature Selection and the Improved TCN," Franklin Open, vol. 6, March 2024. DOI: 10.56094/fo.2024.1004
- P. Lara-Benitez, M. Carranza-Garcia, J. M. Luna-Romera and J. C. Riquelme, "Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting," Applied Sciences, vol. 10, no. 7, 2322, 2020. DOI: 10.3390/app10072322
- R. Wan, S. Mei, J. Wang, M. Liu and F. Yang, "Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting," Electronics, vol. 8, no. 8, 876, Aug. 2019. DOI: 10.3390/electronics8080876
- G. Selva Jeba and P. Chitra, "River Flood Prediction through Flow Level Modeling Using Multi-Attention Encoder-Decoder-Based TCN with Filter-Wrapper Feature Selection," Earth Science Informatics, pp. 1-17, 2023. DOI: 10.1007/s12145-024-01446-9
- M. Liu, X. Sun and Q. Wang, "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, vol. 15, no. 19, 7170, Oct. 2022. DOI: 10.3390/en15197170
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, vol. 1, no. 4, pp. 541-551, Dec. 1989. DOI: 10.1162/neco.1989.1.4.541
- N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves and K. Kavukcuoglu, "Neural Machine Translation in Linear Time," arXiv, Oct. 2016. arXiv preprint arXiv:1610.10099
- S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. DOI: 10.1162/neco.1997.9.8.1735
- J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling," arXiv, Dec. 2014. DOI: 10.48550/arXiv.1412.3555
- J. Long, E. Shelhamer and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440, June 2015. DOI: 10.1109/CVPR.2015.7298965
- R. Urraca, A. Sanz-Garcia, J. Fernandez-Ceniceros and F. J. Martinez-De-Pison, "Improving Hotel Room Demand Forecasting with a Hybrid GA-SVR Methodology Based on Skewed Data Transformation, Feature Selection and Parsimony Tuning," Lecture Notes in Computer Science, vol. 9121, Dec. 2015. DOI: 10.1007/978-3-319-19644-2_52
- A. M. Usman, U. K. Yusof and S. Naim, "Filter-Based Multi-Objective Feature Selection Using NSGA III and Cuckoo Optimization Algorithm," IEEE Access, vol. 8, pp. 76333-76356, 2020. DOI: 10.1109/ACCESS.2020.2987057
- Y. Xue, Y. Tang, X. Xu, J. Liang and F. Neri, "Multi-Objective Feature Selection with Missing Data in Classification," IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 2, pp. 355-364, Apr. 2022. DOI: 10.1109/TETCI.2021.3074147
- A. Papasani, R. Durgam and N. Devarakonda, "Adaptive Neighborhood Adjustment Strategy Based on MOHHO and NSGA-III Algorithms for Feature Selection," IAENG International Journal of Applied Mathematics, vol. 54, no. 5, pp. 917-935, May 2024.
- M. S. Almutairi, K. Almutairi and H. Chiroma, "Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III," Applied Sciences, vol. 13, no. 4, 2064, Feb. 2023. DOI: 10.3390/app13042064
- Md Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen, A. A. S. Awwal and V. K. Asari, "A State-of-the-Art Survey on Deep Learning Theory and Architectures," Electronics, vol. 8, no. 3, 292, Mar. 2019. DOI: 10.3390/electronics8030292
- F. Karim, S. Majumdar, H. Darabi and S. Harford, "Multivariate LSTM-FCNs for Time Series Classification," Neural Networks, vol. 116, Aug. 2019, pp. 237-245. DOI: 10.1016/j.neunet.2019.04.014
- A. Ayodeji, Z. Wang, W. Wang, W. Qin, C. Yang, S. Xu and X. Liu, "Causal Augmented ConvNet: A Temporal Memory Dilated Convolution Model for Long-Sequence Time Series Prediction," ISA Transactions, vol. 123, pp. 200-217, April 2022. DOI: 10.1016/j.isatra.2021.05.026