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<Abstract>

In this paper, anomaly detection methods for a collaborative robot during the 

chemical drum assembly process in the semiconductor industry are presented. The 

manual assembly of chemical drums has been automated using robots to prevent 

industrial accidents. However, the automation may increase downtime due to 

anomalies or failures in the robot manipulator tasks. To prevent this issue in advance, 

the methods to diagnose anomalous behaviors and conditions in the robotic 

automation workflow and subsequently resume tasks are proposed. To detect and 

diagnose anomalies in the tasks, the Random Forest classification method was utilized. 

Using this Random Forest classification, the collaborative robot anomaly detection 

model achieved an accuracy of 98.91%, successfully detecting all anomalies in the 

assembly process.
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1. Introduction  

In the semiconductor industry, over 100 

types of chemicals are used for purposes 

such as cleaning, etching, stripping, and 

electroplating. The chemicals contained within 

clean drums are delivered to the Central 

Chemical Supply System (CCSS) through a 

dispensing system. The dispensing system is 

connected to the chemical drum by attaching 

a dispenser for suction. With the improvement 

in robot performance, robotic automation has 

been increasingly applied in the semiconductor 

industry to enhance productivity and efficiency 

and to address issues such as safety accidents 

during tasks [1]. Despite improvements in 

robot performance, robotic automation has 

experienced an increase in unexpected 

downtime [2]. When the system is suddenly 

halted in robotic automation due to failures, 

errors, or natural disasters, negative impacts 

on products, time, and injuries are caused. 

Therefore, additional strategies to detect and 

minimize problems in advance are required.

Fig. 1 shows the application of robot 

automation in the chemical drum assembly. 

In the chemical drum assembly, robotic 

automation is used to assemble the dispenser 

to the inlet of the chemical drum at the 

supply station using mobile manipulator [3,4].

In this paper, a method for anomaly 

detection and classification in robotic automation 

during the chemical drum assembly is presented. 

The method is designed to minimize downtime 

and classify the causes of downtime.

2. Anomaly Detection Process in 

Chemical Drum Assembly

As shown in Fig. 2, anomaly detection is 

performed according to the automated assembly 

process of chemical drums and is represented 

Fig. 1 Process for chemical drum assembly 

Fig. 2 Anomaly detection method for robotic 

automation in the chemical drum assembly 

process 
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in the following steps:

1. Vision detection: The inlet where the 

dispenser will be assembled is recognized 

through vision, and the central coordinate 

of the inlet is returned. The robot 

end-effector is aligned according to the 

returned central coordinate.

2. Dispenser assembly: In the aligned state 

of the robot end-effector, the dispenser 

located at the end of the robot is 

assembled to the inlet. Force control is 

performed through the F/T sensor 

mounted at the end of the robot to 

minimize the reaction force generated 

during the assembly. 

3. Assembly anomaly detection: The reaction 

force generated during the dispenser 

assembly process is monitored for anomalies, 

and a machine learning-trained prediction 

model is used to classify the success or 

failure of the assembly.

4. Anomaly detection of collaborative robot: 

Data on joint positions, speed, and 

current generated during the robot's 

operation are collected. Anomalies are 

detected using a machine learning- 

trained prediction model, and load and 

vibration are classified. 

In industrial settings, vision systems can 

encounter various issues such as lens 

contamination from chemical gases of the 

chemical drum and installation position 

errors. To detect these anomalies, if the 

robot is aligned according to the coordinates 

returned during the detection phase, the 

Vision task returns 1. If the robot is not 

aligned, the Vision task returns 2.

If the vision task returns 2, the vision 

system recognizes that the inlet is not within 

the image frame and moves the robot 

upward along the z-axis to achieve a wider 

field of view (FOV), then returns vision task 

3. After this, vision detection is performed 

again. If the inlet is detected, the robot 

aligns accordingly. If vision detection fails, 

the anomaly is reported to the operator, and 

the robot remains on standby.

Vision detection was performed using the 

Intel Realsense D455 [5], and the contours of 

the RGB image were detected using the Find 

Contours function defined in the OpenCV 

library. The circular shape of the contour 

was confirmed using the approxPolyDP function, 

and the minEnclosingCircle function was used 

to calculate the circumscribed circle and 

return the central coordinates of the circle. 

This allowed the robot end-effector to be 

aligned with the assembly location. The 

measurement height for vision detection was 

defined as 500mm, and the pixel resolution 

obtained through experiments was 0.205mm/ 

 

 

Fig. 3 Vision detection results(top: detection failure; 

bottom: detection success)
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pixel. Fig. 3 shows the results of vision 

detection, indicating cases where the assembly 

location is outside the camera’s field of view 

and thus not detected, and cases where the 

assembly is successfully detected. 

Fig. 4 is a demo configured for experimentation 

and data measurement for automated 

chemical drum assembly. The configured 

robot system (UR10e [6] equipped with a 

commercial F/T sensor, Onrobot HEX-E [7]) 

was used, and the dispenser {R } and assembly 

{H } were modeled to perform assembly tasks 

and classify detected anomalies.

3. Anomaly Detection Methods for a 

Collaborative Robot

Anomaly detection for collaborative robots 

was performed using machine learning 

methods to classify the robot's state based on 

its data [8]. Among the machine learning 

methods, the Random Forest is characterized 

by using an ensemble learning method of a 

single tree structure. As shown in Fig. 5, 

Random Forest randomly extracts new sample 

sets from the original data set using the 

bootstrap resampling method and constructs 

decision trees with these samples. The 

classification result is determined by a 

majority voting strategy, where the class that 

receives the most votes becomes the final 

classification result [9].

This parallel structure of supervised learning 

is significantly faster in terms of training 

Fig. 4 Demo setup for automated chemical drum 

assembly process

Fig. 5 Configuration of the Random Forest model

Fig. 6 Method overview for the robot/assembly 

anomaly detection
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speed compared to other learning methods 

and was chosen to efficiently construct the 

collaborative robot anomaly detection prediction 

model when handling large-scale data sets, 

such as those in robot systems.

Fig. 6 provides an overview of the 

collaborative robot/assembly anomaly detection. 

Before training the model, the robot data(Joint 

Position(), Joint Velocity(), Joint Current() 

and F/T sensor( ) data undergo a data 

preprocessing process to be transformed into 

various features. The purpose of transforming 

data into features is to obtain more accurate 

detection results more easily in machine 

learning. The differences between actual and 

target data generated from the raw data were 

critical, and the sliding window technique 

was used to divide the features into a 

one-second timeframe. It was observed that 

using data less than one second long for 

detection tended to decrease the model's 

prediction accuracy. The data used and the 

calculated features are shown in Table 1. 

Table 2 shows the classification according 

to the model type. Two different types of 

models are trained for collaborative robot/ 

assembly anomaly detection. The anomaly 

detection model for the collaborative robot is 

trained to detect anomalies in the joint 

operations used by the robot and can classify 

multiple types of anomalies through multi-class 

classification. The assembly anomaly detection 

model is trained using data from the F/T 

sensor and can detect anomalies in the 

assembly operation.

Fig. 7 illustrates the setup for the chemical 

drum assembly demo experiment. The process 

of aligning the robot end-effector to the 

center of the assembly detected by the robot 

vision and performing the assembly was 

repeated to generate data for model training. 

The diameter of the dispenser and assembly 

Analyzed data Equation Units

Joint position 
error vector



 


 

 

Joint velocity
error vector

 







Joint current 
error vector



 


 

 

Force/torque vector        

(Note) The subscripts ‘d’ and ‘a’ denote the desired 
(or target) and actual values in the 6-axis joints, 

respectively. All the vectors are 6×m ones.

Table 1. Analyzed robot data

Model Type Classification
Anomaly
Situation

Label

Robot anomaly 
detection

Normality 0

Anomaly 1 weight 3kg 1

Anomaly 2 weight 6kg 2

Anomaly 3 vibration 3

Assembly anomaly 
detection

Normality Success 0

Anomaly 1 Failure 1

Table 2. Classification by model type

 

Fig. 7 Experiment on automated chemical drum 

assembly process
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model is 56mm, with a tolerance difference 

of h7 (0.03mm).

Fig. 8 shows the feature data used for 

training the collaborative robot/assembly anomaly 

detection models, with the following anomaly 

conditions created for each segment:

①: Robot operating under normal conditions

②: Robot operating under abnormal conditions 

with a 3kg load applied

③: Robot operating under abnormal conditions 

with a 6kg load applied

④: Robot operating under abnormal conditions 

with vibrations (300rpm)

ⓐ: Successful assembly operation

ⓑ: Failed assembly operation

Fig. 9 presents the validation feature data 

used to assess the prediction accuracy of the 

model. It distinguishes between normal state, 

anomaly state 1, anomaly state 2, and anomaly 

state 3 over the sequence of operation time, 

and is further divided into data from 3 

successful assemblies and 3 failed assemblies.

Fig. 10 and 11 compare the prediction 

results and actual labels of the feature data. 

To verify the accuracy of the model results, 

the accuracy of the multi-class classification 

Fig. 8 Data according to anomalies for training 

Fig. 9 Data according to anomalies for validation 

Fig. 10 Prediction results of collaborative robot 

anomaly detection classification



  Development of Anomaly Detection Methods for a Collaborative Robot in Chemical Drum Assembly 1067

can be determined by dividing the number of 

differences between the predicted labels and 

actual labels by the total number of samples 

in the test dataset.

The classification accuracy of the collaborative 

robot anomaly detection model was 98.91%, 

and the assembly anomaly detection model 

detected all anomalies.

6. Conclusions

A method for detecting and classifying 

anomalies in the chemical drum assembly 

process used in the semiconductor industry 

was presented. By classifying work anomalies, 

the method aimed to enhance the productivity 

and efficiency of automated operations and 

address safety issues that could occur during 

the process.

Data for normal and abnormal states were 

generated through experiments, and models 

were developed to predict the success and 

failure of robot operation and assembly tasks. 

The accuracy of each model was evaluated 

by applying Random Forest. The classification 

accuracy of the anomaly detection model of 

the collaborative robot was found to be 

98.91%, and the assembly anomaly detection 

model detected all anomalies, confirming the 

high predictive accuracy of the proposed 

method.

In this paper, the reliability of robotic 

automation was enhanced, and the applicability 

of anomaly detection method using machine 

learning methods in various manufacturing 

industries, including the semiconductor industry, 

was demonstrated. Consequently, the contributions 

were made to improving safety and production 

efficiency.
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