Acknowledgement
The research described in this paper was financially supported by the National Science Foundation Grant Number 1505530.
References
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7-8), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
- Bretherton, F.P. (1962), "The motion of rigid particles in a shear flow at low Reynolds number", J. Fl. Mech., 14(2), 284-304. https://doi.org/10.1017/S002211206200124X
- Burnett, D.S. (1987), Finite Element Analysis: From Concepts to Application, Addison-Wesley Publishing Company, Whippany, New Jersey., U.S.A.
- Callister, W.D.J. and Rethwisch, D.G. (2009), Materials Science and Engineering an Introduction, Eight edition, John Wiley & Sons, Inc, U.S.A.
- Courtney, T.H. (2005), Mechanical Behavior of Materials, Waveland Press, Inc, Long Grove, Illinois, U.S.A.
- De Corato, M., Greco, F. and Maffettone, P.L. (2015), "Locomotion of a microorganism in weakly viscoelastic liquids", Phys. Rev. E, 92(5), 3008. https://doi.org/10.1103/PhysRevE.92.053008
- Donea, J., Huerta, A., Ponthot, J.P. and Rodriguez-Ferran, A. (1999), "Arbitrary Lagrangian-Eulerian Methods", Encyclopedia Comput. Mech., 1-25.
- Folgar, F. and Tucker, C.L. (1984), "Orientation behavior of fibers in concentrated suspensions", J. Reinforced Plast. Compos., 3(2), 98-119. https://doi.org/10.1177/0731684484003002
- Forgacs, O.L. and Mason, S.G. (1959), "Particle motions in sheared suspensions: X. Orbits of flexible threadlike particles", J. Colloid Sci., 14(5), 473-491. https://doi.org/10.1016/0095-8522(59)90013-3
- Ho, B.P. and Leal, L.G. (1974), "Inertial migration of rigid spheres in two-dimensional unidirectional flows", J. Fl. Mech., 65(2), 365-400. https://doi.org/10.1017/S0022112074001431
- Hu, H.H., Joseph, D.D. and Crochet, M.J. (1992), "Direct simulation of fluid particle motions", Theor. Comput. Fl. Dyn., 3(5), 285-306. https://doi.org/10.1007/BF00717645
- Jeffery, G.B. (1922), "The motion of ellipsoidal particles immersed in a viscous fluid", Proceedings of the Royal Society of London, Series A, 102(715), 161-179. https://doi.org/10.1098/rspa.1922.0078
- Kuraray (2018), Fibers and Textiles/Man-Made Leather/Nonwoven Fabrics/Hook-and-Loop Fasteners/Vinyl Acetate Derivatives/KURALON, Kuraray Co., Ltd, Tokyo, Japan. www.kuraray.com/products/vinylon
- Malvern, L.E. (1977), Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Inc, New Jersey, U.S.A.
- Oersson, P.O. and Strang, G. (2012), Distmesh - A Simple Mesh Generator in MATLAB, Department of Mathematics, UC Berkeley, California, U.S.A. http://persson.berkeley.edu/distmesh/.
- Papathanasiou, T.D. and Guell, D.C. (1997), Flow-Induced Alignment in Composite Materials, Elsevier, Cambridge, U.K.
- Park, K.C., Felippa, C.A. and Farhat, C. (2001), "Partitioned analysis of coupled systems", Comput. Meth. Transient Anal., 190(24-25), 3247-3270.
- Peskin, C.S. (2002), "The immersed boundary method", Acta Numerica, 11, 479-517. https://doi.org/10.1017/S0962492902000077
- Qi, D. (2007), "A new method for direct simulations of flexible filament suspensions in non-zero raynolds number flow", Int. J. Numer. Method Fl., 54(1), 103-118. https://doi.org/10.1002/fld.1398
- Reddy, J.N. (2004), An Introduction To Nonlinear Finite Element Analysis, Oxford University Press, Oxford University Press, Oxford, U.K.
- Reddy, J.N. and Gartling, D.K. (1985), The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, New York, U.S.A.
- Ross, R.F. and Klingenberg, D.J. (1997), "Dynamic simulation of flexible fibers composed of linked rigid bodies", J. Chem. Phys., 106(7), 2949-2960. https://doi.org/10.1063/1.473067
- Segre, G. and Silberberg, A. (1961), "Radial particle displacements in poiseuille flow of suspensions", Nature, 189(4760), 209-210. https://doi.org/10.1038/189209a0
- Slowicka, A.M., Wajnryb, E. and Ekiel-Jezewska, M.L. (2015), "Dynamics of flexible fibers in shear flow", J. Chem. Phys., 143(12), 124904. https://doi.org/10.1063/1.4931598
- Stover, C.A. and Cohen, C. (1990), "The motion of rodlike particles in the pressure-driven flow between two flat plates", Rheologica Acta, 29(3), 192-203. https://doi.org/10.1007/BF01331355
- Sugihara-Seki, M. (1996), "The motion of an ellipsoid in tube flow at low Reynolds numbers", J. Fl. Mech., 324, 287-308. https://doi.org/10.1017/S0022112096007926
- Tan, J., Keller, W., Sohrabi, S., Yang, J. and Liu, Y. (2016), "Characterization of nanoparticle dispersion in red blood cell suspension by the lattice boltzmann-immersed boundary method", Nanomaterials, 6(2), 30. https://doi.org/10.3390/nano6020030
- Tezduyar, T., Sathe, S. and Senga, M. (2006), "Finite element modeling of fluid-structure interactions with space-time and advanced mesh update techniques", Fl. Struct. Interact. Lecture Notes Comput. Sci. Eng., 53, 50-81.
- Wang, G., Yu, W. and Zhou, C. (2006), "Optimization of the rod chain model to simulate the motions of a long flexible fiber in simple shear flows", Eur. J. Mech. B Fluids, 25(3), 337-347. https://doi.org/10.1016/j.euromechflu.2005.09.004
- Wiens, J.K. and Stockie, J.M. (2015), "Simulating flexible fiber suspensions using a scalable immersed boundary algorithm", Comput. Meth. Appl. Mech. Eng., 290, 1-18. https://doi.org/10.1016/j.cma.2015.02.026
- Yamamoto, S. and Matsuoka, T. (1993), "A method for dynamic simulation of rigid and flexible fibers in a flow field", J. Chem. Phys., 98(1), 644-650. https://doi.org/10.1063/1.464607
- Zhang, D. (2013), Flow-Induced Micro- and Nano-Fiber Suspensions in Short-Fiber Reinforced Composite Materials Processing, University of Missouri, U.S.A.
- Zhang, D. and Smith, D.E. (2016), "Dynamic simulation of discrete fiber motion in fiber-reinforced composite materials processing", J. Compos. Mater., 50(10), 1301-1319. https://doi.org/10.1177/0021998315590266