Acknowledgement
This study was supported by JSPS KAKENHI (21K0423100, 24K00966), Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures, and High-Performance Computing Infrastructure in Japan (Project IDs: jh230036, jh240035). Support was also provided by the SECOM Science and Technology Foundation.
References
- Abreu, A.I., Carrer, J.A.M. and Mansur, W.J. (2003), "Scalar wave propagation in 2D: A BEM formulation based on the operational quadrature method", Eng. Anal. Bound. Elem., 27, 101-105. https://doi.org/10.1016/S0955-7997(02)00087-5
- Aour, B., Rahmani, O. and Nait-Abdelaziz, M. (2006), "A coupled FEM/BEM approach and its accuracy for solving crack problems in fracture mechanics", Int. J. Solids Struct., 44, 2523-2539.
- Azqandi, M.S., Hassanzadeh, M. and Arjmand, M. (2019), "Sensitivity analysis based on complex variables in FEM for linear structures", Adv. Comput. Des., 4(1), 15-32. https://doi.org/10.12989/acd.2019.4.1.015
- Bebendorf, M. (2008), Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Springer-Verlag.
- Beskos, D. (1987), Boundary Element Methods in Mechanics, North Holland.
- Chung, S.Y., Han, T.S. and Kim S.Y. (2015) "Reconstruction and evaluation of the air permeability of a cement paste specimen with a void distribution gradient using CT images and numerical methods", Constr. Build. Mater., 87(15), 45-53. https://doi.org/10.1016/j.conbuildmat.2015.03.103
- Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics: Vol.1 and 2, Academic Press Inc.
- Fellinger, P., Marklein, R., Langenberg, K. J. and Klaholz, S. (1995), "Numerical modeling of elastic wave propagation and scattering with EFIT -elastodynamic finite integration technique", Wave Motion, 21(1), 47-66. https://doi.org/10.1016/0165-2125(94)00040-C
- Fukui. T, and Ishida, Y. (1987), "Time marching BE-FE method in wave problem", Proceedings of the 1st Japan-China Symposium Boundary Element Methods, 95-106.
- Givoli, D. (2004), "High-order local non-reflecting boundary conditions: a review", Wave Motion, 39, 319-326. https://doi.org/10.1016/j.wavemoti.2003.12.004
- Greengard, L. and Rokhlin, V. (1987), "A fast algorithm for particle simulations", J. Comput. Phys., 73, 325-348.
- Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, New York, N.Y., U.S.A.
- Logan, D.L. (2016), A First Course in the Finite Element Method: SI Edition, Cl-Engineering.
- Lubich, C. (1998), "Convolution quadrature and discretized operational calculus I", Numerische Mathematik, 52, 129-145. https://doi.org/10.1007/BF01398686
- Lubich, C. (1998), "Convolution quadrature and discretized operational calculus II", Numerische Mathematik, 52, 413-425. https://doi.org/10.1007/BF01462237
- Mansur, W.J. and Brebbia, C.A. (1983), "Transient elastodynamics using a time-stepping technique", Bound. Elem., 677-698.
- Nakahata, K, Hirose, S., Schbert, F. and Kohler, B. (2009), "Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel", J. Solid Mech. Mater. Eng., 3(12), 1256-1262. https://doi.org/10.1299/jmmp.3.1256
- Niwa, Y., Fukui, T., Kato, S. and Fujiki, K. (1980), "An application of the integral equation method to two-dimensional elastodynamics", Theor. Appl. Mech., 28, 281-290.
- Rokhlin, V. (1985), "Rapid solution of integral equations of classical potential theory", J. Comput. Phys., 60, 187-207.
- Rose J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, Cambridgeshire, U.K.
- Saitoh, T. (2024), "Convolution quadrature time-domain boundary element method for antiplane anisotropic viscoelastic wave propagation", Eng. Anal. Bound. Elem., 164, 105753. https://doi.org/10.1016/j.enganabound.2024.105753
- Saitoh, T., Chikazawa, F. and Hirose, S. (2014), "Convolution quadrature time-domain boundary element method for 2-D fluid-saturated porous media", Appl. Math. Modell., 38, 3724-3740. https://doi.org/10.1016/j.apm.2014.02.009
- Saitoh, T., Ichikawa, R. and Inagaki, Y. (2016), "Development of coupling method of convolution quadrature BEM and image-based FEM for 2-D wave propagation in time-domain", J. Japan Soc. Comput. Meth. Eng., 16, 1-6 (in Japanese).
- Saitoh, T. and Takeda, H. (2021), "Convolution quadrature time-domain boundary element method for viscoelastic wave scattering by many cavities in 3-D infinite space", Int. J. Comput. Methods, 2141020. https://doi.org/10.1142/S0219876221410206
- Schanz, M. and Antes, H. (1997), "Application of operational quadrature methods in time domain boundary element method", Meccanica., 32, 179-186. http://doi.org/10.1023/A:1004258205435
- Schanz, M. (2001), Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, Springer.
- Shaw, I.D. and Andrawes, B. (2017), "Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders", Adv. Comput. Des., 2(2), 147-168. https://doi.org/10.12989/acd.2017.2.2.147
- Terada, K., Miura, T. and Kikuchi, N. (1997), "Digital image-based modeling applied to the homogenization analysis of composite materials", Comput. Mech., 20(4), 331-346. https://doi.org/10.1007/s004660050255
- Von, E.O. and Prabucki, M.J. (1990), "Dynamic response in the time domain by coupled boundary and finite elements", Comput. Mech., 6, 35-46.
- Xinzhong, G. and Shunming, L. (2018), "Convolution quadrature time-domain boundary element method for two-dimensional aeroacoustic noise prediction", Acoust. Phys, 64, 731-741.
- Yu, W., Yang, X., Liu, Y., Mittra, R. and Muto, A. (2011), Advanced FDTD Method: Parallelization, Acceleration, and Engineering Applications, Artech House.