DOI QR코드

DOI QR Code

Isogeometric micromechanical damage analysis of fiber-reinforced composites by presenting a single-patch framework

  • Ali Hosseinzadeh (Department of Mechanical Engineering, Isfahan University of Technology) ;
  • Mohammad Reza Forouzan (Department of Mechanical Engineering, Isfahan University of Technology) ;
  • Mehdi Karevan (Department of Mechanical Engineering, Isfahan University of Technology)
  • 투고 : 2023.03.10
  • 심사 : 2024.09.11
  • 발행 : 2024.07.25

초록

Implementing isogeometric methodology in micromechanical analysis of composite materials has been recently investigated in some research studies. These research studies are based on multi-patch modeling which requires coupling constraints among the NURBS patches, and the domain decomposition effort in model preparation stage. This approach has been employed for small representative volume elements (RVE). However, small RVE neglects some characteristics of microstructure and larger one increases the number of required NURBS patches in multi-patch framework. As a step forward, this research presents a framework which simulates the RVE using a single NURBS patch. the presented framework has been used to include the effects of fiber distribution and porosities in simulated RVEs. In this regard, heterogeneity and 2D/3D voids within RVE are modeled only by inserting knots and modifying the control points. In addition to beneficial advantages of isogeometric methodology for RVE-based models, this framework simplifies isogeometric modeling of more complicated RVEs by eliminating the domain decomposition stage and avoiding coupling constraints between non-matching patches. The performance of the presented model has been verified by performing micromechanical damage analysis on several generated RVEs of unidirectional fiber-reinforced composites, in which matrix and fiber/matrix interfaces experience damage. The predicted damage evolutions under different loading conditions are in excellent agreement with prior experimental and numerical studies that demonstrate the veracity of the presented model.

키워드

참고문헌

  1. Alaydin, M.D., Behzadinasab, M. and Bazilevs, Y. (2022), "Isogeometric analysis of multilayer composite shell structures: Plasticity, damage, delamination and impact modeling", Int. J. Solids Struct., 252, 111782. https://doi.org/10.1016/j.ijsolstr.2022.111782.
  2. Alberdi, R., Zhang, G. and Khandelwal, K. (2018), "A framework for implementation of RVE-based multiscale models in computational homogenization using isogeometric analysis", Int. J. Numer. Methods Eng., 114(9), 1018-1051. https://doi.org/10.1002/nme.5775.
  3. Arefi, A., van der Meer, F.P., Forouzan, M.R. and Silani, M. (2018), "Formulation of a consistent pressure-dependent damage model with fracture energy as input", Compos. Struct., 201, 208-216. https://doi.org/10.1016/j.compstruct.2018.06.005.
  4. Arefi, A., van der Meer, F.P., Forouzan, M.R., Silani, M. and Salimi, M. (2020), "Micromechanical evaluation of failure models for unidirectional fiber-reinforced composites", J. Compos. Mater., 54(6), 791-800. https://doi.org/10.1177/0021998319867470.
  5. Ashouri Vajari, D. (2015), "A micromechanical study of porous composites under longitudinal shear and transverse normal loading", Compos. Struct., 125, 266-276. https://doi.org/10.1016/j.compstruct.2015.02.026.
  6. Ashouri Vajari, D., Gonzalez, C., Llorca, J. and Legarth, B.N. (2014), "A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites", Compos. Sci. Technol., 97, 46-54. https://doi.org/10.1016/j.compscitech.2014.04.004.
  7. Barbero, E.J. (2008), Finite Element Analysis of Composite Materials, (First Edition), CRC press
  8. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A. and Sederberg, T.W. (2010), "Isogeometric analysis using T-splines", Comput. Methods Appl. Mech. Eng., 199(5-8), 229-263. https://doi.org/10.1016/j.cma.2009.02.036.
  9. Bazilevs, Y., Deng, X., Korobenko, A., Lanza di Scalea, F., Todd, M.D. and Taylor, S.G. (2015), "Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data", J. Appl. Mech., 82(9) https://doi.org/10.1115/1.4030795.
  10. Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Fatigue crack growth in functionally graded material using homogenized XIGA", Compos. Struct., 134, 269-284. https://doi.org/10.1016/j.compstruct.2015.08.065.
  11. Bhardwaj, G., Singh, S.K., Patil, R.U., Godara, R.K. and Khanna, K. (2021), "Thermo-elastic analysis of cracked functionally graded materials using XIGA", Theor. Appl. Fract. Mech., 114(May), 103016. https://doi.org/10.1016/j.tafmec.2021.103016.
  12. Bhardwaj, G. and Singh, I.V. (2015), "Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1065-1082. https://doi.org/10.1007/s40430-014-0232-1.
  13. Canal, L.P., Gonzalez, C., Segurado, J. and LLorca, J. (2012), "Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling", Compos. Sci. Technol., 72(11), 1223-1232. https://doi.org/10.1016/j.compscitech.2012.04.008.
  14. Chan, C.L., Anitescu, C. and Rabczuk, T. (2019), "Strong multipatch C1-coupling for isogeometric analysis on 2D and 3D domains", Comput. Methods Appl. Mech. Eng., 357, 112599. https://doi.org/10.1016/j.cma.2019.112599.
  15. De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Methods Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121.
  16. Deng, X., Korobenko, A., Yan, J. and Bazilevs, Y. (2015), "Isogeometric analysis of continuum damage in rotation-free composite shells", Comput. Methods Appl. Mech. Eng., 284, 349-372. https://doi.org/10.1016/j.cma.2014.09.015.
  17. Dimitri, R. and Zavarise, G. (2017), "Isogeometric treatment of frictional contact and mixed mode debonding problems", Comput. Mech., 60(2), 315-332. https://doi.org/10.1007/s00466-017-1410-7.
  18. Dokken, T., Skytt, V., Haenisch, J. and Bengtsson, K. (2009), "Isogeometric Representation and Analysis: Bridging the Gap Between CAD and Analysis", 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 1-10. https://doi.org/10.2514/6.2009-1172.
  19. Gonzalez, C. and LLorca, J. (2007), "Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling", Compos. Sci. Technol., 67(13), 2795-2806. https://doi.org/10.1016/j.compscitech.2007.02.001.
  20. Guo, Y., Do, H. and Ruess, M. (2019), "Isogeometric stability analysis of thin shells: From simple geometries to engineering models", Int. J. Numer. Methods Eng., 118(8), 433-458. https://doi.org/10.1002/nme.6020.
  21. Guo, Y., Ruess, M. and Schillinger, D. (2017), "A parameter-free variational coupling approach for trimmed isogeometric thin shells", Comput. Mech., 59(4), 693-715. https://doi.org/10.1007/s00466-016-1368-x.
  22. Gurdal, Z., Tomasino, A.P. and Biggers, S.B. (1991), "effects of processing induced defects on laminate response - interlaminar tensile strength", Sampe J., 27
  23. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
  24. Lopez, J., Anitescu, C. and Rabczuk, T. (2021), "Isogeometric structural shape optimization using automatic sensitivity analysis", Appl. Math. Model., 89, 1004-1024. https://doi.org/10.1016/j.apm.2020.07.027.
  25. Matsubara, S., Nishi, S.-N. and Terada, K. (2017), "On the treatments of heterogeneities and periodic boundary conditions for isogeometric homogenization analysis", Int. J. Numer. Methods Eng., 109(11), 1523-1548. https://doi.org/10.1002/nme.5328.
  26. Mehdikhani, M., Gorbatikh, L., Verpoest, I. and Lomov, S. V. (2019a), "Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance", J. Compos. Mater., 53(12), 1579-1669. https://doi.org/10.1177/0021998318772152.
  27. Mehdikhani, M., Petrov, N.A., Straumit, I., Melro, A.R., Lomov, S. V. and Gorbatikh, L. (2019b), "The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales", Compos. Part A Appl. Sci. Manuf., 117, 180-192. https://doi.org/10.1016/j.compositesa.2018.11.009.
  28. Melro, A.R., Camanho, P.P. andrade Pires, F.M. and Pinho, S.T. (2013), "Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II - Micromechanical analyses", Int. J. Solids Struct., 50(11-12), 1906-1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007.
  29. Naya, F., Gonzalez, C., Lopes, C.S., Van der Veen, S. and Pons, F. (2017), "Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects", Compos. Part A Appl. Sci. Manuf., 92, 146-157. https://doi.org/10.1016/j.compositesa.2016.06.018.
  30. Nguyen, V.P., Kerfriden, P. and Bordas, S.P.A. (2014), "Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis", Compos. Part B Eng., 60, 193-212. https://doi.org/10.1016/j.compositesb.2013.12.018.
  31. Pigazzini, M.S., Bazilevs, Y., Ellison, A. and Kim, H. (2018), "Isogeometric analysis for simulation of progressive damage in composite laminates", J. Compos. Mater., 52(25), 3471-3489. https://doi.org/10.1177/0021998318770723.
  32. Puck, A. and Schurmann, H. (2002), "Failure analysis of FRP laminates by means of physically based phenomenological models", Compos. Sci. Technol., 62(12-13), 1633-1662. https://doi.org/10.1016/S0266-3538(01)00208-1.
  33. Rawat, A., Piska, R., Rajagopal, A. and Hossain, M. (2021), "Nonlocal plasticity-based damage modeling in quasi-brittle materials using an isogeometric approach", Eng. Comput., 38(6), 2604-2630. https://doi.org/10.1108/EC-12-2019-0562.
  34. Ruess, M., Schillinger, D., Ozcan, A.I. and Rank, E. (2014), "Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries", Comput. Methods Appl. Mech. Eng., 269, 46-71. https://doi.org/10.1016/j.cma.2013.10.009.
  35. Sederberg, T.W., Finnigan, G.T., Li, X., Lin, H. and Ipson, H. (2008), "Watertight trimmed NURBS", ACM Trans. Graph., 27(3), 1-8. https://doi.org/10.1145/1399504.1360678.
  36. Shamloofard, M. and Assempour, A. (2019), "Development of an inverse isogeometric methodology and its application in sheet metal forming process", Appl. Math. Model., 73, 266-284. https://doi.org/10.1016/j.apm.2019.03.042.
  37. Singh, I.V, Bhardwaj, G. and Mishra, B.K. (2015), "A new criterion for modeling multiple discontinuities passing through an element using XIGA", J. Mech. Sci. Technol., 29(3), 1131-1143. https://doi.org/10.1007/s12206-015-0225-8.
  38. Terada, K., Hori, M., Kyoya, T. and Kikuchi, N. (2000), "Simulation of the multi-scale convergence in computational homogenization approaches", Int. J. Solids Struct., 37(16), 2285-2311. https://doi.org/10.1016/S0020-7683(98)00341-2.
  39. Turon, A., Camanho, P.P., Costa, J. and Davila, C.G. (2006), "A damage model for the simulation of delamination in advanced composites under variable-mode loading", Mech. Mater., 38(11), 1072-1089. https://doi.org/10.1016/j.mechmat.2005.10.003.
  40. Verhoosel, C. V., Scott, M.A., de Borst, R. and Hughes, T.J.R. (2011a), "An isogeometric approach to cohesive zone modeling", Int. J. Numer. Methods Eng., 87(1-5), 336-360. https://doi.org/10.1002/nme.3061.
  41. Verhoosel, C. V., Scott, M.A., Hughes, T.J.R. and de Borst, R. (2011b), "An isogeometric analysis approach to gradient damage models", Int. J. Numer. Methods Eng., 86(1), 115-134. https://doi.org/10.1002/nme.3150.
  42. Willberg, C. (2016), "Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements", Adv. Comput. Des., 1(1), 37-60. https://doi.org/10.12989/acd.2016.1.1.037.
  43. Yildizdag, M.E., Demirtas, M. and Ergin, A. (2020), "Multipatch discontinuous Galerkin isogeometric analysis of composite laminates", Contin. Mech. Thermodyn., 32(3), 607-620. https://doi.org/10.1007/s00161-018-0696-9.