DOI QR코드

DOI QR Code

Feasibility Study of Modifying Diagnostic Radiation Dose using Magnetic Field

자기장을 이용한 진단방사선 선량 변화 가능성 연구

  • Jeong-Min Seo (Department of Radiological Science, Catholic University of Pusan)
  • 서정민 (부산가톨릭대학교 방사선학과)
  • Received : 2024.10.07
  • Accepted : 2024.10.31
  • Published : 2024.10.31

Abstract

This study investigated the feasibility of applying the changes in electron dose distribution, observed in high-energy therapeutic radiation using magnetic fields, to low-energy diagnostic radiation. The diagnostic X-ray exposure conditions were set with a tube current of 200 mA, source-to-detector distance (SDD) of 100 cm, exposure time of 1.0 sec, and an irradiation field size of 20 × 20 cm2. The tube voltage was varied from 70 to 100 kVp in 10 kVp increments. A 0.5 T permanent Nd magnet was used to create a magnetic field below the collimator. Measurements were repeated 20 times for each tube voltage, both with and without the magnetic field, and were compared using an independent-samples t-test. While slight differences of dose were observed at tube voltages of 70, 80, and 90 kVp, no statistically significant differences were found (p > .05). However, a significant difference was observed at 100 kVp (p = .048). Based on these findings, it is suggested that applying higher energy, longer exposure times, stronger magnetic fields, and high-performance detectors could potentially modify the electron dose distribution in diagnostic radiation. This could contribute to dose reduction for patients and improvement in the quality of medical imaging.

본 연구에서는 고에너지 치료용 방사선에서 확인된 자기장을 이용한 전자선량 분포의 변화를 저에너지진단용 방사선에서 적용할 수 있는 가능성을 확인하였다. 진단용 엑스선 조사 조건은 관전류 200 mA, SDD 100 cm, 조사시간 1.0 sec, 조사면 크기 20 × 20 cm2, 관전압은 70에서 100 kVp까지 10 kVp 간격으로 조사하였다. 자기장은 0.5 T 영구자석을 이용하여 콜리메이터 아래에 형성하였다. 자기장이 없는 조건과 자기장을 인가한 조건에서 각 관전압별로 20회 반복 측정하였으며 독립표본 t 검정을 통하여 비교하였다. 관전압 70, 80, 90 kVp에서 미세한 선량 차이가 보이나 통계적으로 유의한 차이는 나타나지 않았으며(p>.05), 관전압 100 kVp에서 차이가 나타남을 확인하였다(p=.048). 이러한 결과를 통하여 본 연구에서 적용한 조건보다 높은 에너지와 긴 조사시간, 그리고 강한 자기장을 적용하고, 고성능의 검출기를 사용한다면 진단용 방사선의 사용에서 선량전달에 기여하는 전자선의 선량을 변화시켜, 피검자에 대한 선량과 의료영상의 질적 향상에 적용이 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2023년 부산가톨릭대학교 대학혁신지원사업 지원으로 수행되었음

References

  1. J. M. Cosset, I. Gusev, Y. Li, etc., Radiological Protection in Medicine, ICRP Publication 105, 2007
  2. H. K. Park, E. H. Goo, "A Study on Leakage Radiatin in Radiographic Examination", Journal of Radiation Industry, Vol. 16, No. 4, pp. 543-549, 2022. https://doi.org/10.23042/radin.2022.16.4.543
  3. P. Burns, J. Cooper, J. D. Harrison, etc., The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, 2007
  4. S. C. Bushong, Radiologic Science for Technologists : Physics, Biology, and Protection, 11th Ed., Elsevier, St. Louis, pp. 84-160, 2017
  5. A. Querol, S. Gallardo, J. Rodenas, G. Verdu, "Analysus of the Effect of the Electron Energy Distribution on the X-Ray Spectra Produced", International Nuclear Atlantic conference 2011. https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/046/43046450.pdf
  6. S. S. Shin, W. Choi, W. S. Ahn, "Effect of Transverse Magnetic Field on Build-up Region of 6MV Photon Beam", Journal of the Korean Magnetics Society, Vol. 27, No. 1, pp. 18-22, 2017. https://doi.org/10.4283/JKMS.2017.27.1.018
  7. W. S. Ahn, W. Choi, Y. R. Ka, etc., "Influence of a Localized Transverse Magnetic Field on Dose Distributions", Journal of Magnetics, Vol. 25, No. 3, pp. 409-414, 2020. https://doi.org/10.4283/JMAG.2020.25.3.409
  8. D. E. Constantisn, R. Fahrig, P. J. Keall,"A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators", Medical Physics, Vol. 38, No. 7, pp.4174-4185, 2011. https://doi.org/10.1118/1.3600695
  9. J. Y. Je, K. S. Noh, O. J. Shin, C. W. Park, "Surface Dose Measurement of Electron Beam within the Magnetic Field Variation", The Journal of Korean Society for Radiation Therapy, Vol. 20, No. 2, pp. 103-107, 2008. https://oldkmbase.medric.or.kr/Main.aspx?menu=01&d=KMBASE&m=VIEW&i=1164220080200020103 103
  10. K. H. Kim, Y. K. Oh, K. C. Shin, J. K. Kim, D. H. Jeong, J. K. Kim, M. J. Cho, S. Y. Kim,, "Monte Carlo Calculation on the Dose Modulation Using Dynamic Magnetic Fields for 10 MV X-rays", Progress in Medical Physics, Vol. 18, No. 4, pp. 221-225, 2007.
  11. Vivien W. S. Chu, Monica W. K. Kan, Louis K. Y. Lee, Kenneth C. W. Wong, Macy Tong, Anthony T. C. Chan, "The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry - A Monte Carlo study", Radiation Medicine and Protection, Vol. 2, No. 3, 2021. https://doi.org/10.1016/j.radmp.2021.08.002
  12. N. H. Jung, Y. Shin, I. H. Jung, J. Kwak, "Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field", Radiation Oncology Journal, Vol. 33, No. 3, 2015. https://doi.org/10.3857/roj.2015.33.3.226
  13. C. J. Choi, J. Park, J. T. Lim, J. W. Kim, "Research Trends and Future Research Directions of Permanent Magnetic Materials", Korean Journal of Metals and Materials, Vol. 59, No. 11, pp. 761-768, 2021. http://dx.doi.org/10.3365/KJMM.2021.59.11.761