DOI QR코드

DOI QR Code

Recent Advances in Immune-based Therapy for Hepatocellular Carcinoma

간세포암종의 면역 기반 항암치료의 최신 지견

  • Kyung Won Park (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Tae Hoon Park (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Eun Ji Jang (The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea) ;
  • Pil Soo Sung (Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
  • 박경원 (가톨릭대학교 의과대학 내과학교실) ;
  • 박태훈 (가톨릭대학교 의과대학 내과학교실) ;
  • 장은지 (가톨릭대학교 의과대학 간연구소) ;
  • 성필수 (가톨릭대학교 의과대학 내과학교실)
  • Received : 2024.07.24
  • Accepted : 2024.08.06
  • Published : 2024.08.20

Abstract

The incidence of hepatocellular carcinoma (HCC) is continuously increasing worldwide, with approximately 1 million new cases expected annually by 2025. Data from the Korean Central Cancer Registry in 2023 revealed that the survival rate of patients with HCC was only 40%, unlike patients with other major cancers with a 5-year survival rate of up to 80%, highlighting the need for improved outcomes. The prognosis of HCC significantly changed following research on immune checkpoint inhibitors (ICIs). Several studies have demonstrated that the overall survival of patients treated with first-line combination therapies, such as atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4), was higher than that of patients treated with sorafenib. Research to identify biomarkers that can predict ICI responses is ongoing, enabling the selection of suitable patients before drug initiation. Moreover, studies of the tumor microenvironment in HCC enhance our understanding of immune responses, helping us identify new therapeutic strategies. Additionally, clinical trials are being conducted for emerging immunotherapies beyond ICIs, such as adoptive cell therapy. Based on these ongoing scientific researches and the development of various therapeutic modalities, multiple options are being established for patients with HCC who do not respond well to first-line treatments. Consequently, treatment options and survival rates of patients with advanced HCC could be significantly enhanced in the future.

Keywords

Acknowledgement

The Basic Science Research Program supported this research through a National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (grant RS-2024-00337298).

References

  1. Kwon MJ, Chang S, Kim JH, et al. Factors associated with the survival outcomes of patients with untreated hepatocellular carcinoma: an analysis of nationwide data. Front Oncol 2023;13:1142661. https://doi.org/10.3389/fonc.2023.1142661 
  2. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894-1905. https://doi.org/10.1056/NEJMoa1915745 
  3. Park DJ, Sung PS, Kim JH, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer 2020;8:e000301. https://doi.org/10.1136/jitc2019-000301 
  4. Huang H, Tsui YM, Ng IO. Fueling HCC dynamics: interplay between tumor microenvironment and tumor initiating cells. Cell Mol Gastroenterol Hepatol 2023;15:1105-1116. https://doi.org/10.1016/j.jcmgh.2023.01.007 
  5. Sung PS. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol 2022;28:333-350. https://doi.org/10.3350/cmh.2021.0308 
  6. Sung PS, Jang JW. Natural killer cell dysfunction in hepatocellular carcinoma: pathogenesis and clinical implications. Int J Mol Sci 2018;19:3648. https://doi.org/10.3390/ijms19113648 
  7. Sung PS, Park DJ, Roh PR, et al. Intrahepatic inflammatory IgA+PD-L1high monocytes in hepatocellular carcinoma development and immunotherapy. J Immunother Cancer 2022;10:e003618. https://doi.org/10.1136/jitc2021-003618 
  8. Kang MW, Lee SK, Jang EJ, et al. Expansion of effector regulatory T cells in steroid responders of severe alcohol-associated hepatitis. Liver Transpl 2024;30:877-886. https://doi.org/10.1097/LVT.0000000000000378 
  9. Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017;169:1342-1356.e16. https://doi.org/10.1016/j.cell.2017.05.035 
  10. Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022;612:141-147. https://doi.org/10.1038/s41586-022-05400-x 
  11. Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019;179:829-845.e20. https://doi.org/10.1016/j.cell.2019.10.003 
  12. Park JG, Roh PR, Kang MW, et al. Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC. Hepatology 2024. doi: 10.1097/hep.0000000000000772. [Epub ahead of print] 
  13. Pfister D, Nunez NG, Pinyol R, et al. NASH limits antitumour surveillance in immunotherapy-treated HCC. Nature 2021;592:450-456. https://doi.org/10.1038/s41586-021-03362-0 
  14. Ma S, Chew V. Unlocking the immune microenvironment of nonalcoholic steatohepatitis-associated HCC. Hepatology 2024;79:532-534. https://doi.org/10.1097/hep.0000000000000626 
  15. Li M, Wang L, Cong L, et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2024;79:560-574. https://doi.org/10.1097/hep.0000000000000591 
  16. Han JW, Sung PS, Yoo JS, et al. Differential liver function at cessation of atezolizumab-bevacizumab versus lenvatinib in HCC: a multicenter, propensity-score matched comparative study. Front Oncol 2024;14:1372007. https://doi.org/10.3389/fonc.2024.1372007 
  17. Meyer T, Galani S, Lopes A, Vogel A. Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease. J Hepatol 2023;79:e73-e76. https://doi.org/10.1016/j.jhep.2023.04.012 
  18. Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014;59:1415-1426. https://doi.org/10.1002/hep.26731 
  19. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-543. https://doi.org/10.1038/s41575-021-00438-0 
  20. Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol 2017;8:1679. https://doi.org/10.3389/fimmu.2017.01679 
  21. Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024. doi: 10.1016/j.jhepr.2024.101130. [Epub ahead of print] 
  22. Wong M, Kim JT, Cox B, et al. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat Oncol 2021;8:HEP39. https://doi.org/10.2217/hep-2020-0034 
  23. Zhu AX, Abbas AR, De Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022;28:1599-1611. https://doi.org/10.1038/s41591-022-01868-2 
  24. Barsch M, Salie H, Schlaak AE, et al. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J Hepatol 2022;77:397-409. https://doi.org/10.1016/j.jhep.2022.02.032 
  25. Zakeri N, Hall A, Swadling L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat Commun 2022;13:1372. https://doi.org/10.1038/s41467-022-29012-1 
  26. Li Y, You Z, Tang R, Ma X. Tissue-resident memory T cells in chronic liver diseases: phenotype, development and function. Front Immunol 2022;13:967055. https://doi.org/10.3389/fimmu.2022.967055 
  27. Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019;68:916-927. https://doi.org/10.1136/gutjnl-2018-316510 
  28. An J, Kang HJ, Yu E, Lee HC, Shim JH. The effects of immune checkpoint modulators on the clinical course of patients with resectable hepatocellular carcinoma. J Liver Cancer 2022;22:40-50. https://doi.org/10.17998/jlc.2022.03.06 
  29. Im SJ, Obeng RC, Nasti TH, et al. Characteristics and anatomic location of PD-1(+)TCF1(+) stem-like CD8 T cells in chronic viral infection and cancer. Proc Natl Acad Sci U S A 2023;120:e2221985120. https://doi.org/10.1073/pnas.2221985120 
  30. Cariani E, Pilli M, Zerbini A, et al. HLA and killer immunoglobulin-like receptor genes as outcome predictors of hepatitis C virus-related hepatocellular carcinoma. Clin Cancer Res 2013;19:5465-5473. https://doi.org/10.1158/1078-0432.Ccr-13-0986 
  31. Schoenberg MB, Li X, Li X, et al. The predictive value of tumor infiltrating leukocytes in hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Surg Oncol 2021;47:2561-2570. https://doi.org/10.1016/j.ejso.2021.04.042 
  32. Yu S, Wang Y, Hou J, et al. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS One 2020;15:e0231003. https://doi.org/10.1371/journal.pone.0231003 
  33. Gao Y, You M, Fu J, et al. Intratumoral stem-like CCR4+ regulatory T cells orchestrate the immunosuppressive microenvironment in HCC associated with hepatitis B. J Hepatol 2022;76:148-159. https://doi.org/10.1016/j.jhep.2021.08.029 
  34. Liu Y, Xun Z, Ma K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol 2023;78:770-782. https://doi.org/10.1016/j.jhep.2023.01.011 
  35. Han JW, Kim JH, Kim DH, et al. Higher number of tumor-infiltrating PD-L1+ cells is related to better response to multikinase inhibitors in hepatocellular carcinoma. Diagnostics (Basel) 2023;13:1453. https://doi.org/10.3390/diagnostics13081453 
  36. Mun K, Han J, Roh P, et al. Isolation and characterization of cancer-associated fibroblasts in the tumor microenvironment of hepatocellular carcinoma. J Liver Cancer 2023;23:341-349. https://doi.org/10.17998/jlc.2023.04.30 
  37. Heymann F, Peusquens J, Ludwig-Portugall I, et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015;62:279-291. https://doi.org/10.1002/hep.27793 
  38. David CJ, Massague J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018;19:419-435. https://doi.org/10.1038/s41580-018-0007-0 
  39. Jin X, Zhang S, Wang N, et al. High expression of TGF-β1 contributes to hepatocellular carcinoma prognosis via regulating tumor immunity. Front Oncol 2022;12:861601. https://doi.org/10.3389/fonc.2022.861601 
  40. Feun LG, Li YY, Wu C, et al. Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer 2019;125:3603-3614. https://doi.org/10.1002/cncr.32339 
  41. Sung PS, Cho SW, Lee J, et al. Infiltration of T cells and programmed cell death ligand 1-expressing macrophages as a potential predictor of lenvatinib response in hepatocellular carcinoma. J Liver Cancer 2020;20:128-134. https://doi.org/10.17998/jlc.20.2.128 
  42. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 2021;21:485-498. https://doi.org/10.1038/s41577-020-00490-y 
  43. Greten TF, Zhao F, Gamrekelashvili J, Korangy F. Human Th17 cells in patients with cancer: friends or foe? Oncoimmunology 2012;1:1438-1439. https://doi.org/10.4161/onci.21245 
  44. Han Y, Chen Z, Yang Y, et al. Human CD14+ CTLA4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 2014;59:567-579. https://doi.org/10.1002/hep.26694 
  45. Xiao X, Lao XM, Chen MM, et al. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 2016;6:546-559. https://doi.org/10.1158/2159-8290.Cd15-1408 
  46. Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009;50:980-989. https://doi.org/10.1016/j.jhep.2008.12.033 
  47. Zhu GQ, Tang Z, Huang R, et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov 2023;9:25. https://doi.org/10.1038/s41421-023-00529-z 
  48. Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023;55:1322-1332. https://doi.org/10.1038/s12276-023-01013-0 
  49. Zhu Y, Gu J, Lu Y, et al. IL-6 released from hepatic stellate cells promotes glycolysis and migration of HCC through the JAK1/vWF/TGFB1 axis. J Hepatocell Carcinoma 2024;11:1295-1310. https://doi.org/10.2147/jhc.S464880 
  50. Shalapour S, Lin XJ, Bastian IN, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017;551:340-345. https://doi.org/10.1038/nature24302 
  51. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502. https://doi.org/10.1016/s0140-6736(17)31046-2 
  52. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-952. https://doi.org/10.1016/s1470-2045(18)30351-6 
  53. Kudo M, Finn RS, Edeline J, et al. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer 2022;167:1-12. https://doi.org/10.1016/j.ejca.2022.02.009 
  54. El-Khoueiry AB, Trojan J, Meyer T, et al. Nivolumab in sorafenib-naive and sorafenib-experienced patients with advanced hepatocellular carcinoma: 5-year followup from CheckMate 040. Ann Oncol 2024;35:381-391. https://doi.org/10.1016/j.annonc.2023.12.008 
  55. Yau T, Park JW, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022;23:77-90. https://doi.org/10.1016/s1470-2045(21)00604-5 
  56. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 2020;38:193-202. https://doi.org/10.1200/jco.19.01307 
  57. Qin S, Chen Z, Fang W, et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): phase 3 KEYNOTE-394 study. J Clin Oncol 2022;40(4 Suppl):383. https://doi.org/10.1200/JCO.2022.40.4_suppl.383 
  58. Sung PS, Jang JW, Lee J, et al. Real-world outcomes of nivolumab in patients with unresectable hepatocellular carcinoma in an endemic area of hepatitis B virus infection. Front Oncol 2020;10:1043. https://doi.org/10.3389/fonc.2020.01043 
  59. Abou-Alfa GK, Lau G, Kudo M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 2022;1:EVIDoa2100070. https://doi.org/10.1056/EVIDoa2100070 
  60. Qin S, Kudo M, Meyer T, et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: a phase 3 randomized clinical trial. JAMA Oncol 2023;9:1651-1659. https://doi.org/10.1001/jamaoncol.2023.4003 
  61. Cheng AL, Qin S, Ikeda M, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022;76:862-873. https://doi.org/10.1016/j.jhep.2021.11.030 
  62. Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol 2021;22:977-990. https://doi.org/10.1016/s1470-2045(21)00252-7 
  63. Kelley RK, Rimassa L, Cheng AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2022;23:995-1008. https://doi.org/10.1016/s1470-2045(22)00326-6 
  64. Llovet JM, Kudo M, Merle P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023;24:1399-1410. https://doi.org/10.1016/s1470-2045(23)00469-2 
  65. Sung PS, Lee IK, Roh PR, Kang MW, Ahn J, Yoon SK. Blood-based biomarkers for immune-based therapy in advanced HCC: promising but a long way to go. Front Oncol 2022;12:1028728. https://doi.org/10.3389/fonc.2022.1028728 
  66. Qin S, Chan SL, Gu S, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 2023;402:1133-1146. https://doi.org/10.1016/s0140-6736(23)00961-3 
  67. Kim JH, Nam HC, Kim CW, et al. Comparative analysis of atezolizumab plus bevacizumab and hepatic artery infusion chemotherapy in unresectable hepatocellular carcinoma: a multicenter, propensity score study. Cancers (Basel) 2023;15:4233. https://doi.org/10.3390/cancers15174233 
  68. Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol 2020;6:e204564. https://doi.org/10.1001/jamaoncol.2020.4564 
  69. Galle PR, Decaens T, Kudo M, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): first results from CheckMate 9DW. J Clin Oncol 2024;42(17 Suppl):LBA4008. https://doi.org/10.1200/JCO.2024.42.17_suppl.LBA4008 
  70. Sangro B, Chan SL, Kelley RK, et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann Oncol 2024;35:448-457. https://doi.org/10.1016/j.annonc.2024.02.005 
  71. Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019;20:282-296. https://doi.org/10.1016/s1470-2045(18)30937-9 
  72. Scheiner B, Pomej K, Kirstein MM, et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J Hepatol 2022;76:353-363. https://doi.org/10.1016/j.jhep.2021.09.035 
  73. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375: 1823-1833. https://doi.org/10.1056/NEJMoa1606774 
  74. Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 2017;153:812-826. https://doi.org/10.1053/j.gastro.2017.06.007 
  75. Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019;25:2116-2126. https://doi.org/10.1158/1078-0432.Ccr-18-2293 
  76. Ruiz De Galarreta M, Bresnahan E, Molina-Sanchez P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019;9:1124-1141. https://doi.org/10.1158/2159-8290.Cd-19-0074 
  77. Neely J, Yao J, Kudo M, et al. Abstract 2145: genomic and transcriptomic analyses related to the clinical efficacy of first-line nivolumab in advanced hepatocellular carcinoma from the phase 3 CheckMate 459 trial. Cancer Res 2022;82(12 Suppl):2145. https://doi.org/10.1158/1538-7445.Am2022-2145 
  78. Sangro B, Melero I, Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol 2020;73:1460-1469. https://doi.org/10.1016/j.jhep.2020.07.026 
  79. Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023;24:1411-1422. https://doi.org/10.1016/s1470-2045(23)00468-0 
  80. Cui H, Zeng L, Li R, et al. Radiomics signature based on CECT for non-invasive prediction of response to anti-PD-1 therapy in patients with hepatocellular carcinoma. Clin Radiol 2023;78:e37-e44. https://doi.org/10.1016/j.crad.2022.09.113 
  81. Xu B, Dong SY, Bai XL, et al. Tumor radiomic features on pretreatment MRI to predict response to lenvatinib plus an anti-PD-1 antibody in advanced hepatocellular carcinoma: a multicenter study. Liver Cancer 2023;12:262-276. https://doi.org/10.1159/000528034 
  82. Hua Y, Sun Z, Xiao Y, et al. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy. J Immunother Cancer 2024;12:e008953. https://doi.org/10.1136/jitc-2024-008953 
  83. Yang C, Zhang ZM, Zhao ZP, et al. Radiomic analysis based on magnetic resonance imaging for the prediction of VEGF expression in hepatocellular carcinoma patients. Abdom Radiol (NY) 2024. doi: 10.1007/s00261- 024-04427-0. [Epub ahead of print] 
  84. Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PDL1 expression in hepatocellular carcinoma. Sci Rep 2023;13:7710. https://doi.org/10.1038/s41598-023-34763-y 
  85. Anderson LD Jr. Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncol 2022;18:277-289. https://doi.org/10.2217/fon-2021-1090 
  86. Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017;16:669. https://doi.org/10.1038/nrd.2017.196 
  87. Shi M, Zhang B, Tang ZR, et al. Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 2004;10:1146-1151. https://doi.org/10.3748/wjg.v10.i8.1146 
  88. Lee JH, Lee JH, Lim YS, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015;148:1383- 1391.e6. https://doi.org/10.1053/j.gastro.2015.02.055 
  89. Wang L, Li X, Dong XJ, et al. Dendritic cell-cytokine killer combined with microwave ablation reduced recurrence for hepatocellular carcinoma compared to ablation alone. Technol Health Care 2024;32:1819-1834. https://doi.org/10.3233/thc-230871 
  90. Yoon JS, Song BG, Lee JH, et al. Adjuvant cytokine-induced killer cell immunotherapy for hepatocellular carcinoma: a propensity score-matched analysis of real-world data. BMC Cancer 2019;19:523. https://doi.org/10.1186/s12885-019-5740-z 
  91. Jiang SS, Tang Y, Zhang YJ, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget 2015;6:41339-41349. https://doi.org/10.18632/oncotarget.5463 
  92. June CH, O'connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359:1361-1365. https://doi.org/10.1126/science.aar6711 
  93. Jiang W, Li T, Guo J, et al. Bispecific c-Met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Front Oncol 2021;11:546586. https://doi.org/10.3389/fonc.2021.546586 
  94. Liu H, Xu Y, Xiang J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res 2017;23:478-488. https://doi.org/10.1158/1078-0432.Ccr-16-1203 
  95. Shi D, Shi Y, Kaseb AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res 2020;26:3979-3989. https://doi.org/10.1158/1078-0432.Ccr-19-3259 
  96. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003;125:89-97. https://doi.org/10.1016/s0016-5085(03)00689-9 
  97. Zhang Q, Fu Q, Cao W, et al. Phase I study of CCAR031, a GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2024;42(16 Suppl):4019. https://doi.org/10.1200/JCO.2024.42.16_suppl.4019 
  98. Liu P, Chen L, Zhang H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. J Immunol Res 2018;2018:1206737. https://doi.org/10.1155/2018/1206737 
  99. Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology 2014;3:e28147. https://doi.org/10.4161/onci.28147 
  100. Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 2016;7:91. https://doi.org/10.3389/fimmu.2016.00091 
  101. Yu M, Luo H, Fan M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther 2018;26:366-378. https://doi.org/10.1016/j.ymthe.2017.12.012 
  102. Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024. doi: 10.1016/j.stem.2024.06.009. [Epub ahead of print] 
  103. Watanabe K, Nishikawa H. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. Int Immunol 2021;33:551-562. https://doi.org/10.1093/intimm/dxab052 
  104. Gehring AJ, Xue SA, Ho ZZ, et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol 2011;55:103-110. https://doi.org/10.1016/j.jhep.2010.10.025 
  105. Meng F, Zhao J, Tan AT, et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int 2021;15:1402-1412. https://doi.org/10.1007/s12072-021-10250-2 
  106. Wan X, Wisskirchen K, Jin T, et al. Genetically redirected HBV-specific T cells target HBsAg-positive hepatocytes and primary lesions in HBV-associated HCC. Clin Mol Hepatol 2024. doi: 10.3350/cmh.2024.0058. [Epub ahead of print]