Acknowledgement
The Basic Science Research Program supported this research through a National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (grant RS-2024-00337298).
References
- Kwon MJ, Chang S, Kim JH, et al. Factors associated with the survival outcomes of patients with untreated hepatocellular carcinoma: an analysis of nationwide data. Front Oncol 2023;13:1142661. https://doi.org/10.3389/fonc.2023.1142661
- Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894-1905. https://doi.org/10.1056/NEJMoa1915745
- Park DJ, Sung PS, Kim JH, et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer 2020;8:e000301. https://doi.org/10.1136/jitc2019-000301
- Huang H, Tsui YM, Ng IO. Fueling HCC dynamics: interplay between tumor microenvironment and tumor initiating cells. Cell Mol Gastroenterol Hepatol 2023;15:1105-1116. https://doi.org/10.1016/j.jcmgh.2023.01.007
- Sung PS. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol 2022;28:333-350. https://doi.org/10.3350/cmh.2021.0308
- Sung PS, Jang JW. Natural killer cell dysfunction in hepatocellular carcinoma: pathogenesis and clinical implications. Int J Mol Sci 2018;19:3648. https://doi.org/10.3390/ijms19113648
- Sung PS, Park DJ, Roh PR, et al. Intrahepatic inflammatory IgA+PD-L1high monocytes in hepatocellular carcinoma development and immunotherapy. J Immunother Cancer 2022;10:e003618. https://doi.org/10.1136/jitc2021-003618
- Kang MW, Lee SK, Jang EJ, et al. Expansion of effector regulatory T cells in steroid responders of severe alcohol-associated hepatitis. Liver Transpl 2024;30:877-886. https://doi.org/10.1097/LVT.0000000000000378
- Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017;169:1342-1356.e16. https://doi.org/10.1016/j.cell.2017.05.035
- Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022;612:141-147. https://doi.org/10.1038/s41586-022-05400-x
- Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019;179:829-845.e20. https://doi.org/10.1016/j.cell.2019.10.003
- Park JG, Roh PR, Kang MW, et al. Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC. Hepatology 2024. doi: 10.1097/hep.0000000000000772. [Epub ahead of print]
- Pfister D, Nunez NG, Pinyol R, et al. NASH limits antitumour surveillance in immunotherapy-treated HCC. Nature 2021;592:450-456. https://doi.org/10.1038/s41586-021-03362-0
- Ma S, Chew V. Unlocking the immune microenvironment of nonalcoholic steatohepatitis-associated HCC. Hepatology 2024;79:532-534. https://doi.org/10.1097/hep.0000000000000626
- Li M, Wang L, Cong L, et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2024;79:560-574. https://doi.org/10.1097/hep.0000000000000591
- Han JW, Sung PS, Yoo JS, et al. Differential liver function at cessation of atezolizumab-bevacizumab versus lenvatinib in HCC: a multicenter, propensity-score matched comparative study. Front Oncol 2024;14:1372007. https://doi.org/10.3389/fonc.2024.1372007
- Meyer T, Galani S, Lopes A, Vogel A. Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease. J Hepatol 2023;79:e73-e76. https://doi.org/10.1016/j.jhep.2023.04.012
- Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014;59:1415-1426. https://doi.org/10.1002/hep.26731
- Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-543. https://doi.org/10.1038/s41575-021-00438-0
- Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol 2017;8:1679. https://doi.org/10.3389/fimmu.2017.01679
- Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024. doi: 10.1016/j.jhepr.2024.101130. [Epub ahead of print]
- Wong M, Kim JT, Cox B, et al. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat Oncol 2021;8:HEP39. https://doi.org/10.2217/hep-2020-0034
- Zhu AX, Abbas AR, De Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022;28:1599-1611. https://doi.org/10.1038/s41591-022-01868-2
- Barsch M, Salie H, Schlaak AE, et al. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J Hepatol 2022;77:397-409. https://doi.org/10.1016/j.jhep.2022.02.032
- Zakeri N, Hall A, Swadling L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat Commun 2022;13:1372. https://doi.org/10.1038/s41467-022-29012-1
- Li Y, You Z, Tang R, Ma X. Tissue-resident memory T cells in chronic liver diseases: phenotype, development and function. Front Immunol 2022;13:967055. https://doi.org/10.3389/fimmu.2022.967055
- Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019;68:916-927. https://doi.org/10.1136/gutjnl-2018-316510
- An J, Kang HJ, Yu E, Lee HC, Shim JH. The effects of immune checkpoint modulators on the clinical course of patients with resectable hepatocellular carcinoma. J Liver Cancer 2022;22:40-50. https://doi.org/10.17998/jlc.2022.03.06
- Im SJ, Obeng RC, Nasti TH, et al. Characteristics and anatomic location of PD-1(+)TCF1(+) stem-like CD8 T cells in chronic viral infection and cancer. Proc Natl Acad Sci U S A 2023;120:e2221985120. https://doi.org/10.1073/pnas.2221985120
- Cariani E, Pilli M, Zerbini A, et al. HLA and killer immunoglobulin-like receptor genes as outcome predictors of hepatitis C virus-related hepatocellular carcinoma. Clin Cancer Res 2013;19:5465-5473. https://doi.org/10.1158/1078-0432.Ccr-13-0986
- Schoenberg MB, Li X, Li X, et al. The predictive value of tumor infiltrating leukocytes in hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Surg Oncol 2021;47:2561-2570. https://doi.org/10.1016/j.ejso.2021.04.042
- Yu S, Wang Y, Hou J, et al. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS One 2020;15:e0231003. https://doi.org/10.1371/journal.pone.0231003
- Gao Y, You M, Fu J, et al. Intratumoral stem-like CCR4+ regulatory T cells orchestrate the immunosuppressive microenvironment in HCC associated with hepatitis B. J Hepatol 2022;76:148-159. https://doi.org/10.1016/j.jhep.2021.08.029
- Liu Y, Xun Z, Ma K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol 2023;78:770-782. https://doi.org/10.1016/j.jhep.2023.01.011
- Han JW, Kim JH, Kim DH, et al. Higher number of tumor-infiltrating PD-L1+ cells is related to better response to multikinase inhibitors in hepatocellular carcinoma. Diagnostics (Basel) 2023;13:1453. https://doi.org/10.3390/diagnostics13081453
- Mun K, Han J, Roh P, et al. Isolation and characterization of cancer-associated fibroblasts in the tumor microenvironment of hepatocellular carcinoma. J Liver Cancer 2023;23:341-349. https://doi.org/10.17998/jlc.2023.04.30
- Heymann F, Peusquens J, Ludwig-Portugall I, et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015;62:279-291. https://doi.org/10.1002/hep.27793
- David CJ, Massague J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018;19:419-435. https://doi.org/10.1038/s41580-018-0007-0
- Jin X, Zhang S, Wang N, et al. High expression of TGF-β1 contributes to hepatocellular carcinoma prognosis via regulating tumor immunity. Front Oncol 2022;12:861601. https://doi.org/10.3389/fonc.2022.861601
- Feun LG, Li YY, Wu C, et al. Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer 2019;125:3603-3614. https://doi.org/10.1002/cncr.32339
- Sung PS, Cho SW, Lee J, et al. Infiltration of T cells and programmed cell death ligand 1-expressing macrophages as a potential predictor of lenvatinib response in hepatocellular carcinoma. J Liver Cancer 2020;20:128-134. https://doi.org/10.17998/jlc.20.2.128
- Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 2021;21:485-498. https://doi.org/10.1038/s41577-020-00490-y
- Greten TF, Zhao F, Gamrekelashvili J, Korangy F. Human Th17 cells in patients with cancer: friends or foe? Oncoimmunology 2012;1:1438-1439. https://doi.org/10.4161/onci.21245
- Han Y, Chen Z, Yang Y, et al. Human CD14+ CTLA4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 2014;59:567-579. https://doi.org/10.1002/hep.26694
- Xiao X, Lao XM, Chen MM, et al. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 2016;6:546-559. https://doi.org/10.1158/2159-8290.Cd15-1408
- Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009;50:980-989. https://doi.org/10.1016/j.jhep.2008.12.033
- Zhu GQ, Tang Z, Huang R, et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov 2023;9:25. https://doi.org/10.1038/s41421-023-00529-z
- Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med 2023;55:1322-1332. https://doi.org/10.1038/s12276-023-01013-0
- Zhu Y, Gu J, Lu Y, et al. IL-6 released from hepatic stellate cells promotes glycolysis and migration of HCC through the JAK1/vWF/TGFB1 axis. J Hepatocell Carcinoma 2024;11:1295-1310. https://doi.org/10.2147/jhc.S464880
- Shalapour S, Lin XJ, Bastian IN, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017;551:340-345. https://doi.org/10.1038/nature24302
- El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502. https://doi.org/10.1016/s0140-6736(17)31046-2
- Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-952. https://doi.org/10.1016/s1470-2045(18)30351-6
- Kudo M, Finn RS, Edeline J, et al. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer 2022;167:1-12. https://doi.org/10.1016/j.ejca.2022.02.009
- El-Khoueiry AB, Trojan J, Meyer T, et al. Nivolumab in sorafenib-naive and sorafenib-experienced patients with advanced hepatocellular carcinoma: 5-year followup from CheckMate 040. Ann Oncol 2024;35:381-391. https://doi.org/10.1016/j.annonc.2023.12.008
- Yau T, Park JW, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022;23:77-90. https://doi.org/10.1016/s1470-2045(21)00604-5
- Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 2020;38:193-202. https://doi.org/10.1200/jco.19.01307
- Qin S, Chen Z, Fang W, et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): phase 3 KEYNOTE-394 study. J Clin Oncol 2022;40(4 Suppl):383. https://doi.org/10.1200/JCO.2022.40.4_suppl.383
- Sung PS, Jang JW, Lee J, et al. Real-world outcomes of nivolumab in patients with unresectable hepatocellular carcinoma in an endemic area of hepatitis B virus infection. Front Oncol 2020;10:1043. https://doi.org/10.3389/fonc.2020.01043
- Abou-Alfa GK, Lau G, Kudo M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 2022;1:EVIDoa2100070. https://doi.org/10.1056/EVIDoa2100070
- Qin S, Kudo M, Meyer T, et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: a phase 3 randomized clinical trial. JAMA Oncol 2023;9:1651-1659. https://doi.org/10.1001/jamaoncol.2023.4003
- Cheng AL, Qin S, Ikeda M, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022;76:862-873. https://doi.org/10.1016/j.jhep.2021.11.030
- Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol 2021;22:977-990. https://doi.org/10.1016/s1470-2045(21)00252-7
- Kelley RK, Rimassa L, Cheng AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2022;23:995-1008. https://doi.org/10.1016/s1470-2045(22)00326-6
- Llovet JM, Kudo M, Merle P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol 2023;24:1399-1410. https://doi.org/10.1016/s1470-2045(23)00469-2
- Sung PS, Lee IK, Roh PR, Kang MW, Ahn J, Yoon SK. Blood-based biomarkers for immune-based therapy in advanced HCC: promising but a long way to go. Front Oncol 2022;12:1028728. https://doi.org/10.3389/fonc.2022.1028728
- Qin S, Chan SL, Gu S, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 2023;402:1133-1146. https://doi.org/10.1016/s0140-6736(23)00961-3
- Kim JH, Nam HC, Kim CW, et al. Comparative analysis of atezolizumab plus bevacizumab and hepatic artery infusion chemotherapy in unresectable hepatocellular carcinoma: a multicenter, propensity score study. Cancers (Basel) 2023;15:4233. https://doi.org/10.3390/cancers15174233
- Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol 2020;6:e204564. https://doi.org/10.1001/jamaoncol.2020.4564
- Galle PR, Decaens T, Kudo M, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): first results from CheckMate 9DW. J Clin Oncol 2024;42(17 Suppl):LBA4008. https://doi.org/10.1200/JCO.2024.42.17_suppl.LBA4008
- Sangro B, Chan SL, Kelley RK, et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann Oncol 2024;35:448-457. https://doi.org/10.1016/j.annonc.2024.02.005
- Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019;20:282-296. https://doi.org/10.1016/s1470-2045(18)30937-9
- Scheiner B, Pomej K, Kirstein MM, et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J Hepatol 2022;76:353-363. https://doi.org/10.1016/j.jhep.2021.09.035
- Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375: 1823-1833. https://doi.org/10.1056/NEJMoa1606774
- Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 2017;153:812-826. https://doi.org/10.1053/j.gastro.2017.06.007
- Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 2019;25:2116-2126. https://doi.org/10.1158/1078-0432.Ccr-18-2293
- Ruiz De Galarreta M, Bresnahan E, Molina-Sanchez P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019;9:1124-1141. https://doi.org/10.1158/2159-8290.Cd-19-0074
- Neely J, Yao J, Kudo M, et al. Abstract 2145: genomic and transcriptomic analyses related to the clinical efficacy of first-line nivolumab in advanced hepatocellular carcinoma from the phase 3 CheckMate 459 trial. Cancer Res 2022;82(12 Suppl):2145. https://doi.org/10.1158/1538-7445.Am2022-2145
- Sangro B, Melero I, Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol 2020;73:1460-1469. https://doi.org/10.1016/j.jhep.2020.07.026
- Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023;24:1411-1422. https://doi.org/10.1016/s1470-2045(23)00468-0
- Cui H, Zeng L, Li R, et al. Radiomics signature based on CECT for non-invasive prediction of response to anti-PD-1 therapy in patients with hepatocellular carcinoma. Clin Radiol 2023;78:e37-e44. https://doi.org/10.1016/j.crad.2022.09.113
- Xu B, Dong SY, Bai XL, et al. Tumor radiomic features on pretreatment MRI to predict response to lenvatinib plus an anti-PD-1 antibody in advanced hepatocellular carcinoma: a multicenter study. Liver Cancer 2023;12:262-276. https://doi.org/10.1159/000528034
- Hua Y, Sun Z, Xiao Y, et al. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy. J Immunother Cancer 2024;12:e008953. https://doi.org/10.1136/jitc-2024-008953
- Yang C, Zhang ZM, Zhao ZP, et al. Radiomic analysis based on magnetic resonance imaging for the prediction of VEGF expression in hepatocellular carcinoma patients. Abdom Radiol (NY) 2024. doi: 10.1007/s00261- 024-04427-0. [Epub ahead of print]
- Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PDL1 expression in hepatocellular carcinoma. Sci Rep 2023;13:7710. https://doi.org/10.1038/s41598-023-34763-y
- Anderson LD Jr. Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncol 2022;18:277-289. https://doi.org/10.2217/fon-2021-1090
- Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017;16:669. https://doi.org/10.1038/nrd.2017.196
- Shi M, Zhang B, Tang ZR, et al. Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 2004;10:1146-1151. https://doi.org/10.3748/wjg.v10.i8.1146
- Lee JH, Lee JH, Lim YS, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015;148:1383- 1391.e6. https://doi.org/10.1053/j.gastro.2015.02.055
- Wang L, Li X, Dong XJ, et al. Dendritic cell-cytokine killer combined with microwave ablation reduced recurrence for hepatocellular carcinoma compared to ablation alone. Technol Health Care 2024;32:1819-1834. https://doi.org/10.3233/thc-230871
- Yoon JS, Song BG, Lee JH, et al. Adjuvant cytokine-induced killer cell immunotherapy for hepatocellular carcinoma: a propensity score-matched analysis of real-world data. BMC Cancer 2019;19:523. https://doi.org/10.1186/s12885-019-5740-z
- Jiang SS, Tang Y, Zhang YJ, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget 2015;6:41339-41349. https://doi.org/10.18632/oncotarget.5463
- June CH, O'connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359:1361-1365. https://doi.org/10.1126/science.aar6711
- Jiang W, Li T, Guo J, et al. Bispecific c-Met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Front Oncol 2021;11:546586. https://doi.org/10.3389/fonc.2021.546586
- Liu H, Xu Y, Xiang J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res 2017;23:478-488. https://doi.org/10.1158/1078-0432.Ccr-16-1203
- Shi D, Shi Y, Kaseb AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res 2020;26:3979-3989. https://doi.org/10.1158/1078-0432.Ccr-19-3259
- Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003;125:89-97. https://doi.org/10.1016/s0016-5085(03)00689-9
- Zhang Q, Fu Q, Cao W, et al. Phase I study of CCAR031, a GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2024;42(16 Suppl):4019. https://doi.org/10.1200/JCO.2024.42.16_suppl.4019
- Liu P, Chen L, Zhang H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. J Immunol Res 2018;2018:1206737. https://doi.org/10.1155/2018/1206737
- Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology 2014;3:e28147. https://doi.org/10.4161/onci.28147
- Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy - advantages of the NK-92 cell line over blood NK cells. Front Immunol 2016;7:91. https://doi.org/10.3389/fimmu.2016.00091
- Yu M, Luo H, Fan M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther 2018;26:366-378. https://doi.org/10.1016/j.ymthe.2017.12.012
- Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024. doi: 10.1016/j.stem.2024.06.009. [Epub ahead of print]
- Watanabe K, Nishikawa H. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. Int Immunol 2021;33:551-562. https://doi.org/10.1093/intimm/dxab052
- Gehring AJ, Xue SA, Ho ZZ, et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol 2011;55:103-110. https://doi.org/10.1016/j.jhep.2010.10.025
- Meng F, Zhao J, Tan AT, et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int 2021;15:1402-1412. https://doi.org/10.1007/s12072-021-10250-2
- Wan X, Wisskirchen K, Jin T, et al. Genetically redirected HBV-specific T cells target HBsAg-positive hepatocytes and primary lesions in HBV-associated HCC. Clin Mol Hepatol 2024. doi: 10.3350/cmh.2024.0058. [Epub ahead of print]