DOI QR코드

DOI QR Code

Does preoperative forward elevation weakness affect clinical outcomes in anatomic or reverse total shoulder arthroplasty patients with glenohumeral osteoarthritis and intact rotator cuff?

  • Keegan M. Hones (Department of Orthopaedic Surgery and Sports Medicine, University of Florida) ;
  • Kevin A. Hao (College of Medicine, University of Florida) ;
  • Timothy R. Buchanan (College of Medicine, University of Florida) ;
  • Amy P. Trammell (Department of Orthopaedic Surgery and Sports Medicine, University of Florida) ;
  • Jonathan O. Wright (Department of Orthopaedic Surgery and Sports Medicine, University of Florida) ;
  • Thomas W. Wright (Department of Orthopaedic Surgery and Sports Medicine, University of Florida) ;
  • Tyler J. LaMonica (Department of Orthopaedic Surgery and Sports Medicine, University of Florida) ;
  • Bradley S. Schoch (Department of Orthopedic Surgery, Mayo Clinic) ;
  • Joseph J. King (Department of Orthopaedic Surgery and Sports Medicine, University of Florida)
  • Received : 2024.03.21
  • Accepted : 2024.06.02
  • Published : 2024.09.01

Abstract

Background: This study sought to determine if preoperative forward elevation (FE) weakness affects outcomes of anatomic (aTSA) and reverse total shoulder arthroplasty (rTSA) for patients with rotator cuff-intact glenohumeral osteoarthritis (RCI-GHOA). Methods: A retrospective review of a single institution's prospectively collected shoulder arthroplasty database was performed between 2007 and 2020, including 333 aTSAs and 155 rTSAs for primary RCI-GHOA with a minimum 2-year follow-up. Defining preoperative weakness as FE strength ≤4.9 lb (2.2 kg), three cohorts were matched 1:1:1 by age, sex, and follow-up: weak (n=82) to normal aTSAs, weak (n=44) to normal rTSAs, and weak aTSAs (n=61) to weak rTSAs. Compared outcomes included range of motion, outcome scores, and complication and revision rates at latest follow-up. Results: Weak aTSAs and weak rTSAs achieved similar postoperative outcome measures to normal aTSAs and normal rTSAs, respectively (P>0.05). Compared to weak rTSAs, weak aTSAs achieved superior postoperative passive (P=0.006) and active external rotation (ER) (P=0.014) but less favorable postoperative Shoulder Pain and Disability Index (P=0.032), American Shoulder and Elbow Surgeons (P=0.024), and University of California, Los Angeles scores (P=0.008). Weak aTSAs achieved the minimal clinically important difference and substantial clinical benefit at a lower rate for abduction (P=0.045 and P=0.003) and FE (P=0.011 and P=0.001). Weak aTSAs had a higher revision rate (P=0.025) but a similar complication rate (P=0.291) compared to weak rTSAs. Conclusions: Patients with RCI-GHOA and preoperative FE weakness obtain postoperative outcomes similar to patients with normal preoperative strength after either aTSA or rTSA. Preoperatively, weak aTSAs achieved greater ER but lower rates of clinically relevant improvement in overhead motion compared to weak rTSAs.

Keywords

References

  1. Farley KX, Wilson JM, Kumar A, et al. Prevalence of shoulder arthroplasty in the United States and the increasing burden of revision shoulder arthroplasty. JB JS Open Access 2021;6:e20.00156. 
  2. Hao KA, Greene AT, Werthel JD, et al. Clinical outcomes of anatomic vs. reverse total shoulder arthroplasty in primary osteoarthritis with preoperative rotational stiffness and an intact rotator cuff: a case control study. J Shoulder Elbow Surg 2023;32:e355-65.  https://doi.org/10.1016/j.jse.2022.12.027
  3. Marigi EM, Hao KA, Friedman RJ, et al. Exactech Equinoxe anatomic versus reverse total shoulder arthroplasty for primary osteoarthritis: case controlled comparisons using the machine learning-derived Shoulder Arthroplasty Smart score. J Shoulder Elbow Surg 2023;32:793-802.  https://doi.org/10.1016/j.jse.2022.09.029
  4. Pike JM, Singh SK, Barfield WR, Schoch B, Friedman RJ, Eichinger JK. Impact of age on shoulder range of motion and strength. JSES Int 2022;6:1029-33.  https://doi.org/10.1016/j.jseint.2022.08.016
  5. Schoch BS, Tams C, Eichinger J, Wright TW, King JJ, Friedman RJ. Anatomic total shoulder arthroplasty after healed rotator cuff repair: a matched cohort. J Shoulder Elbow Surg 2020;29:2221-8.  https://doi.org/10.1016/j.jse.2020.03.029
  6. Hamilton MA, Diep P, Roche C, et al. Effect of reverse shoulder design philosophy on muscle moment arms. J Orthop Res 2015;33:605-13.  https://doi.org/10.1002/jor.22803
  7. Henninger HB, Barg A, Anderson AE, Bachus KN, Burks RT, Tashjian RZ. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 2012;21:1128-35.  https://doi.org/10.1016/j.jse.2011.07.034
  8. Herrmann S, Konig C, Heller M, Perka C, Greiner S. Reverse shoulder arthroplasty leads to significant biomechanical changes in the remaining rotator cuff. J Orthop Surg Res 2011;6:42. 
  9. Langohr GD, Giles JW, Athwal GS, Johnson JA. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. J Shoulder Elbow Surg 2015;24:972-9.  https://doi.org/10.1016/j.jse.2014.10.018
  10. Trammell AP, Hao KA, Hones KM, et al. Clinical outcomes of anatomical versus reverse total shoulder arthroplasty in patients with primary osteoarthritis, an intact rotator cuff, and limited forward elevation. Bone Joint J 2023;105:1303-13.  https://doi.org/10.1302/0301-620X.105B12.BJJ-2023-0496.R2
  11. Hao KA, Wright TW, Schoch BS, et al. Rate of improvement in shoulder strength after anatomic and reverse total shoulder arthroplasty. JSES Int 2021;6:247-52.  https://doi.org/10.1016/j.jseint.2021.11.002
  12. Pean F, Favre P, Goksel O. Influence of rotator cuff integrity on loading and kinematics before and after reverse shoulder arthroplasty. J Biomech 2021;129:110778. 
  13. Edwards TB, Boulahia A, Kempf JF, Boileau P, Nemoz C, Walch G. The influence of rotator cuff disease on the results of shoulder arthroplasty for primary osteoarthritis: results of a multicenter study. J Bone Joint Surg Am 2002;84:2240-8.  https://doi.org/10.2106/00004623-200212000-00018
  14. Coscia AC, Matar RN, Espinal EE, Shah NS, Grawe BM. Does preoperative diagnosis impact patient outcomes following reverse total shoulder arthroplasty?: a systematic review. J Shoulder Elbow Surg 2021;30:1458-70.  https://doi.org/10.1016/j.jse.2020.10.003
  15. Dezfuli B, King JJ, Farmer KW, Struk AM, Wright TW. Outcomes of reverse total shoulder arthroplasty as primary versus revision procedure for proximal humerus fractures. J Shoulder Elbow Surg 2016;25:1133-7.  https://doi.org/10.1016/j.jse.2015.12.002
  16. Werthel JD, Walch G, Vegehan E, Deransart P, Sanchez-Sotelo J, Valenti P. Lateralization in reverse shoulder arthroplasty: a descriptive analysis of different implants in current practice. Int Orthop 2019;43:2349-60.  https://doi.org/10.1007/s00264-019-04365-3
  17. Flurin PH, Marczuk Y, Janout M, Wright TW, Zuckerman J, Roche CP. Comparison of outcomes using anatomic and reverse total shoulder arthroplasty. Bull Hosp Jt Dis (2013) 2013;71 Suppl 2:101-7. 
  18. Roche C, Kumar V, Overman S, et al. Validation of a machine learning-derived clinical metric to quantify outcomes after total shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:2211-4.  https://doi.org/10.1016/j.jse.2021.01.021
  19. Ho DE, Imai K, King G, Stuart EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw 2011;42:1-28.  https://doi.org/10.18637/jss.v042.i08
  20. Ondeck NT, Fu MC, Skrip LA, McLynn RP, Su EP, Grauer JN. Treatments of missing values in large national data affect conclusions: the impact of multiple imputation on arthroplasty research. J Arthroplasty 2018;33:661-7.  https://doi.org/10.1016/j.arth.2017.10.034
  21. Song A, Cannon D, Kim P, et al. Risk factors for degenerative, symptomatic rotator cuff tears: a case-control study. J Shoulder Elbow Surg 2022;31:806-12.  https://doi.org/10.1016/j.jse.2021.10.006
  22. Song A, DeClercq J, Ayers GD, et al. Comparative time to improvement in nonoperative and operative treatment of rotator cuff tears. J Bone Joint Surg Am 2020;102:1142-50.  https://doi.org/10.2106/JBJS.19.01112
  23. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011;30:377-99.  https://doi.org/10.1002/sim.4067
  24. Rubin DB. Multiple imputation for nonresponse in surveys. Vol. 81. John Wiley & Sons; 2004. 
  25. van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw 2011;45:1-67.  https://doi.org/10.18637/jss.v045.i03
  26. Simovitch R, Flurin PH, Wright T, Zuckerman JD, Roche CP. Quantifying success after total shoulder arthroplasty: the minimal clinically important difference. J Shoulder Elbow Surg 2018;27:298-305.  https://doi.org/10.1016/j.jse.2017.09.013
  27. Simovitch R, Flurin PH, Wright T, Zuckerman JD, Roche CP. Quantifying success after total shoulder arthroplasty: the substantial clinical benefit. J Shoulder Elbow Surg 2018;27:903-11.  https://doi.org/10.1016/j.jse.2017.12.014
  28. Kim H, Kim CH, Kim M, et al. Is reverse total shoulder arthroplasty (rTSA) more advantageous than anatomic TSA (aTSA) for osteoarthritis with intact cuff tendon?: a systematic review and meta-analysis. J Orthop Traumatol 2022;23:3. 
  29. Collin P, Herve A, Walch G, Boileau P, Muniandy M, Chelli M. Mid-term results of reverse shoulder arthroplasty for glenohumeral osteoarthritis with posterior glenoid deficiency and humeral subluxation. J Shoulder Elbow Surg 2019;28:2023-30.  https://doi.org/10.1016/j.jse.2019.03.002
  30. Lindbloom BJ, Christmas KN, Downes K, et al. Is there a relationship between preoperative diagnosis and clinical outcomes in reverse shoulder arthroplasty?: an experience in 699 shoulders. J Shoulder Elbow Surg 2019;28(6S):S110-7.  https://doi.org/10.1016/j.jse.2019.04.007
  31. Rabinowitz J, Kothandaraman V, Lin J, Li X, Friedman RJ, Eichinger JK. Utilization of shoulder arthroplasty in the United States: an analysis of current trends and future predictions. Semin Arthroplasty 2020;30:200-9.  https://doi.org/10.1053/j.sart.2020.08.004
  32. Goetti P, Denard PJ, Collin P, Ibrahim M, Mazzolari A, Ladermann A. Biomechanics of anatomic and reverse shoulder arthroplasty. EFORT Open Rev 2021;6:918-31.  https://doi.org/10.1302/2058-5241.6.210014
  33. Friedman RJ, Flurin PH, Wright TW, Zuckerman JD, Roche CP. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J Shoulder Elbow Surg 2017;26:662-8.  https://doi.org/10.1016/j.jse.2016.09.027
  34. Bethell MA, Hurley ET, Welch J, et al. Subscapularis repair for reverse shoulder arthroplasty: a systematic review and meta-analysis. J Shoulder Elbow Surg 2023;32:2631-40.  https://doi.org/10.1016/j.jse.2023.06.011
  35. Lachance AD, Peebles AM, McBride T, Eble SK, Provencher MT. Subscapularis repair techniques for reverse total shoulder arthroplasty: a systematic review. J ISAKOS 2022;7:181-8.  https://doi.org/10.1016/j.jisako.2022.05.001
  36. King JJ, Greene AT, Hamilton MA, et al. The over-the-top subscapularis repair in reverse shoulder arthroplasty: biomechanical evaluation of a novel technique. JSES Open Access 2019;3:304-10.  https://doi.org/10.1016/j.jses.2019.09.005
  37. Cueto RJ, Hao KA, O'Keefe DS, et al. Clinical outcomes of over-the-top subscapularis repair in reverse shoulder arthroplasty. JSES Int 2024;8:866-72. 
  38. Parada SA, Flurin PH, Wright TW, et al. Comparison of complication types and rates associated with anatomic and reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:811-8.  https://doi.org/10.1016/j.jse.2020.07.028
  39. Keener JD, Patterson BM, Orvets N, Chamberlain AM. Degenerative rotator cuff tears: refining surgical indications based on natural history data. J Am Acad Orthop Surg 2019;27:156-65.  https://doi.org/10.5435/JAAOS-D-17-00480
  40. Marigi EM, Tams C, King JJ, et al. Shoulder arthroplasty after prior anterior shoulder instability surgery: a matched cohort analysis. Eur J Orthop Surg Traumatol 2023;33:961-9. https://doi.org/10.1007/s00590-022-03233-y