DOI QR코드

DOI QR Code

Control the stability of small-scale non-uniform structures via neural networks applied to partial differential equations

  • Xiaoqi Sun (School of Mathematics and Statistics, Qingdao University)
  • Received : 2022.07.16
  • Accepted : 2024.10.02
  • Published : 2024.10.25

Abstract

This research uses a numerical technique and a neural network process to investigate the stability management of non-uniform cylindrical constructions with varying sizes. The non-uniform or truncated conical shapes vary in axial length. This complicated geometry results in partial differential equations in the mathematical explanation of stability performance. Furthermore, material distributions vary in the radial direction in functionally graded materials such as metal and ceramic. The governing equations are obtained from beam theory using the energy technique and non-classical size-dependent theory, respectively. These equations are then solved using both a numerical and neural network methodology. This research can potentially be utilized in nanotechnology to build and evaluate size-dependent non-uniform cylindrical structures. As a consequence, it will help to develop sophisticated nanoscale materials and architectures.

Keywords

References

  1. Andrievski, R.A. (2003), "Review Stability of nanostructured materials", J. Mater. Sci, 38(7), 1367-1375. https://doi.org/10.1023/A:1022988706296.
  2. Attar, F, Khordad, R, Zarifi, A. and Modabberasl, A. (2021), "Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates", Physica B, 600, 412623. https://doi.org/10.1016/j.physb.2020.412623.
  3. Azimi, M, Mirjavadi, S.S, Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  4. Azimi, M, Mirjavadi, S.S, Shafiei, N, Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  5. Barretta, R, Marotti de Sciarra, F. and Vaccaro, M.S. (2023), "Nonlocal elasticity for nanostructures: A review of recent achievements", Encyclopedia, 3(1), 279-310. https://doi.org/10.3390/encyclopedia3010018.
  6. Cao, J, Du, J, Fan, Q, Yang, J, Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  7. Chen, R, Wang, S, Zhang, C, Dui, H, Zhang, Y, Zhang, Y. and Li, Y. (2024), "Component uncertainty importance measure in complex multi-state system considering epistemic uncertainties", Chinese J. Aeronaut., In Press. https://doi.org/10.1016/j.cja.2024.05.024.
  8. Chen, W, Shu, C, He, W. and Zhong, T. (2000), "The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates", Comput. Struct., 74(1), 65-76. https://doi.org/10.1016/S0045-7949(98)00320-4.
  9. Cheng, Q, Ali, H.E. and Albaijan, I. (2023), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concr. Constr., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215.
  10. Dai, Y, Jiang, Z, Chen, K.Y, Zuo, D, Ali, H.E. and Albaijan, I. (2023), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., 48(4), 443. https://doi.org/10.12989/scs.2023.48.4.443.
  11. Ebrahimi, F, Hajilak, Z.E, Habibi, M. and Safarpour, H. (2019a), "Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4590-4605. https://doi.org/10.1177/0954406219832323.
  12. Ebrahimi, F, Mohammadi, K, Barouti, M.M. and Habibi, M. (2019b), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Waves Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1694729.
  13. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  14. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  15. Ebrahimi, F, Shafiei, N, Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  16. Ebrahimi, F, Supeni, E.E.B, Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  17. Ehyaei, J, Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res, 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  18. Fu, L, Li, J, Yang, J, Liu, Y, He, C. and Chen, Y. (2023a), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441.
  19. Fu, T, Hu, X. and Yang, C. (2023b), "Impact response analysis of stiffened sandwich functionally graded porous materials doubly-curved shell with re-entrant honeycomb auxetic core", Appl. Math. Modell., 124, 553-575. https://doi.org/10.1016/j.apm.2023.08.024.
  20. Ghadiri, M, Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  21. Ghadiri, M, Mahinzare, M, Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  22. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  23. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control., 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  24. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  25. Ghadiri, M, Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  26. Ghadiri, M, Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  27. Ghadiri, M, Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  28. Ghadiri, M, Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  29. Ghadiri, M, Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  30. Ghadiri, M, Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  31. Ghadiri, M, Shafiei, N, Salekdeh, S.H, Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  32. Ghazanfari, A, Soleimani, S.S, Keshavarzzadeh, M, Habibi, M, Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  33. Guan, S. (2023), "Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise", Adv. Nano Res., 15(2), 155-163. https://doi.org/10.12989/anr.2023.15.2.155.
  34. Habibi, M, Ghazanfari, A, Assempour, A, Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech. Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664.
  35. Habibi, M, Mohammadi, A, Safarpour, H. and Ghadiri, M. (2019), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  36. Habibi, M, Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1779086.
  37. Han, Q, Ding, Z, Qin, Z, Wang, T, Xu, X. and Chu, F. (2020), "A triboelectric rolling ball bearing with self-powering and self-sensing capabilities", Nano Energy, 67, 104277. https://doi.org/10.1016/j.nanoen.2019.104277.
  38. Han, Q, Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013.
  39. Hashemi, H.R, Alizadeh, A.a, Oyarhossein, M.A, Shavalipour, A, Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  40. He, L. and DEng., Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211.
  41. Islam, M, Thakur, M.S.H, Mojumder, S, Al Amin, A. and Islam, M.M. (2020), "Mechanical and vibrational characteristics of functionally graded Cu-Ni nanowire: A molecular dynamics study", Compos. Part B Eng., 198, 108212. https://doi.org/10.1016/j.compositesb.2020.108212.
  42. Jia, S, Niu, X, Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069.
  43. Jin, H, Zhang, B. and Duan, X. (2023), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435.
  44. Lau, J.-S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concr. Constr., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097.
  45. Li, F, Chen, J, Zhou, L. and Kujala, P. (2024), "Investigation of ice wedge bearing capacity based on an anisotropic beam analogy", Ocean Eng., 302, 117611. https://doi.org/10.1016/j.oceaneng.2024.117611.
  46. Li, J, Bin, N, Guo, F, Gao, X, Chen, R, Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049.
  47. Li, X, Ali, H.E. and Albaijan, I. (2023b), "TiO 2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities", Adv. Nano Res., 15(4), 329-337. https://doi.org/10.12989/anr.2023.15.4.329.
  48. Li, Y, Li, M, Kong, X, Baniasadi, A, Shaker, A.H. and Ali, H.E. (2023c), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277.
  49. Li, Z. (2023), "Resistance of concrete made of fibers in weight lifting slabs against impact in sports training", Struct. Eng. Mech., 86(3), 325-336. https://doi.org/10.12989/sem.2023.86.3.325.
  50. Li, Z, PEng., S. and Chen, G. (2023d), "Research on safety assessment and application effect of nanomedical products in physical education", Adv. Nano Res., 15(3), 253-261. https://doi.org/10.12989/anr.2023.15.3.253.
  51. Liang, Z, Zhao, Y, Yu, H, Habibi, M. and Mahmoudi, T. (2024), "Artificial neural networks coupled with numerical approach for the stability prediction of non-uniform functionally graded microscale cylindrical structures", Structures., 60, 105826. https://doi.org/10.1016/j.istruc.2023.105826.
  52. Lim, C.W, Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  53. Liu, K, Zong, S, Li, Y, Wang, Z, Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  54. Liu, L, Zhang, S, Zhang, L, Pan, G. and Yu, J. (2023), "Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network", IEEE T Cybern, 53(6), 4015-4028. https://doi.org/10.1109/TCYB.2022.3225106.
  55. Liu, S, Xu, N, Zhao, N. and Zhang, L. (2024), "Observer-based optimal fault-tolerant tracking control for input-constrained interconnected nonlinear systems with mismatched disturbances", Opt. Control Appl. Meth., Early View. https://doi.org/10.1002/oca.3173.
  56. Ma, Z, Qi, J, Xun, W. and Li, Y. (2023), "Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide", Adv. Nano Res., 15(1), 67-74. https://doi.org/10.12989/anr.2023.15.1.067.
  57. Mirjavadi, S.S, Afshari, B.M, Shafiei, N, Hamouda, A, Kazemi, M. and StructuRes., C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  58. Mirjavadi, S.S, Matin, A, Shafiei, N, Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress, 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  59. Mirjavadi, S.S, Mohasel Afshari, B, Shafiei, N, Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  60. Mirjavadi, S.S, Rabby, S, Shafiei, N, Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  61. Moayedi, H, Aliakbarlou, H, Jebeli, M, Noormohammadiarani, O, Habibi, M, Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  62. Moayedi, H, Ebrahimi, F, Habibi, M, Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput, 1-16. https://doi.org/10.1007/s00366-020-01002-1.
  63. Moayedi, H, Habibi, M, Safarpour, H, Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  64. Mohammadgholiha, M, Shokrgozar, A, Habibi, M. and Safarpour, H. (2019), "Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets", J. Vib. Control., 25(19-20), 2627-2640. https://doi.org/10.1177/1077546319863251.
  65. Mohammadi, A, Lashini, H, Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264.
  66. Mousavi, S.M, Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: Evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155.
  67. Nami, M.R, Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
  68. Narendar, S, Ravinder, S. and Gopalakrishnan, S. (2012), "Study of non-local wave properties of nanotubes with surface effects", Comput. Mater. Sci., 56, 179-184. https://doi.org/10.1016/j.commatsci.2012.01.008.
  69. Narmani, A, Jahedi, R, Bakhshian-Dehkordi, E, Ganji, S, Nemati, M, Ghahramani-Asl, R, Moloudi, K, Hosseini, S.M, Bagheri, H, Kesharwani, P, Khani, A, Farhood, B. and Sahebkar, A. (2023), "Biomedical applications of PLGA nanoparticles in nano-medicine: Advances in drug delivery systems and cancer therapy", Exp. Op. Drug Deliv, 20(7), 937-954. https://doi.org/10.1080/17425247.2023.2223941.
  70. Omidi, S, Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  71. Oyarhossein, M.A, Alizadeh, A, Habibi, M, Makkiabadi, M, Daman, M, Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  72. Punera, D. and Mukherjee, P. (2022), "Recent developments in manufacturing, mechanics, and design optimization of variable stiffness composites", J. Reinforc. Plast. Compos., 41(23-24), 917-945. https://doi.org/10.1177/07316844221082999.
  73. Qi, L, Wang, Z, Sun, Y, Khorami, M, Mahmoudi, T. and Wu, H. (2024), "Modified couple stress and artificial intelligence examination of nonlinear buckling in porous variable thickness cylinder micro sport structures", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2024.2316795.
  74. Rafiee, M, Nitzsche, F. and Labrosse, M. (2017), "Dynamics, vibration and control of rotating composite beams and blades: A critical review", Thin Wall. Struct., 119, 795-819. https://doi.org/10.1016/j.tws.2017.06.018.
  75. Raiaan, M.A.K, Sakib, S, Fahad, N.M, Mamun, A.A, Rahman, M.A, Shatabda, S. and Mukta, M.S.H. (2024), "A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks", Decision Anal. J, 11, 100470. https://doi.org/10.1016/j.dajour.2024.100470.
  76. Safarpour, H, Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  77. Safarpour, M, Ebrahimi, F, Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-00949-5.
  78. Shafiei, N, Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  79. Shafiei, N, Ghadiri, M, Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell, 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  80. Shafiei, N, Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273
  81. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  82. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  83. Shafiei, N, Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  84. Shafiei, N, Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  85. Shafiei, N, Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  86. Shafiei, N, Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  87. Shafiei, N, Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008. 
  88. Shafiei, N, Kazemi, M, Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  89. Shafiei, N, Mirjavadi, S.S, Afshari, B.M, Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  90. Shafiei, N, Mirjavadi, S.S, MohaselAfshari, B, Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  91. Shafiei, N, Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  92. Shafiei, N, Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  93. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  94. Shanab, R.A, Attia, M.A. and MohaMed., S.A. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131-132, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055.
  95. Shariati, A, Habibi, M, Tounsi, A, Safarpour, H. and Safa, M. (2020a), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9.
  96. Shariati, A, Mohammad-Sedighi, H, Zur, K.K, Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  97. Shivanian, E, Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  98. Shokrgozar, A, Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 512-529. https://doi.org/10.1177/0954406219883312.
  99. Shu, C. (2012), Differential Quadrature and Its Application in Engineering, Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-0407-0.
  100. Shu, J, Yu, H, Liu, G, Duan, Y, Hu, H. and Zhang, H. (2025), "DF-CDM: Conditional diffusion model with data fusion for structural dynamic response reconstruction", Mech. Syst. Signal Pr, 222, 111783. https://doi.org/10.1016/j.ymssp.2024.111783.
  101. Song, S, Zhang, T. and Zhui, Z. (2023), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., 49(5), 487. https://doi.org/10.12989/scs.2023.49.5.487.
  102. Su, Z, MEng., J. and Su, Y. (2023), "Application of SiO 2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355.
  103. Sun, Q, Chen, J, Zhou, L, Ding, S. and Han, S. (2024), "A study on ice resistance prediction based on deep learning data generation method", Ocean Eng., 301, 117467. https://doi.org/10.1016/j.oceaneng.2024.117467.
  104. Sun, R, Wang, S, Li, M. and Zhu, Y. (2025), "An algorithm for large-span flexible bridge pose estimation and multi-keypoint vibration displacement measurement", Measurement, 240, 15582. https://doi.org/10.1016/j.measurement.2024.115582.
  105. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  106. Torkashvand, Z, Shayeganfar, F. and Ramazani, A. (2024), "Nanomaterials based micro/nanoelectromechanical system (MEMS and NEMS) Devices", Micromachines, 15(2). https://doi.org/10.3390/mi15020175.
  107. Van, A.N.T, Tran, H.M.N, Kieu, D.T, Trung, L.V, Ngoc, N.T.N. and Cac, T.T.T. (2024), "Exploring work motivation and job effectiveness in mekong delta's hospitality: A study utilizing partial least squares structural equation modeling", J. Chinese Human Resourc. Manag, 15(2), 101-112. https://doi.org/10.47297/wspchrmWSP2040-800506.20241502.
  108. Wang, C, Habibi, M. and Mahmoudi, T. (2024a), "Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures", Steel Compos. Struct., 52(1), 15. https://doi.org/10.12989/scs.2024.52.1.015.
  109. Wang, G, PEng., K, Zhou, H, Liu, G, Lou, Z. and Pan, F. (2023a), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541.
  110. Wang, P, Gao, Z, Pan, F, Moradi, Z, Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem, 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  111. Wang, S, Lin, S. and Yang, R. (2024b), "A lightweight convolutional neural network for multipoint displacement measurements on bridge structures", Nonlinear Dyn, 112(14), 11745-11763. https://doi.org/10.1007/s11071-024-09673-x.
  112. Wang, T, Zong, G, Zhao, X. and Xu, N. (2024c), "Data-driven-based sliding-mode dynamic event-triggered control of unknown nonlinear systems via reinforcement learning", Neurocomputing, 601, 128176. https://doi.org/10.1016/j.neucom.2024.128176.
  113. Wang, X. (2015), Chapter 1 - Differential Quadrature Method, Butterworth-Heinemann.
  114. Wang, X.Q, Chen, P, Chow, C.L. and Lau, D. (2023b), "Artificial-intelligence-led revolution of construction materials: From molecules to Industry 4.0", Matter, 6(6), 1831-1859. https://doi.org/10.1016/j.matt.2023.04.016.
  115. Wang, Z, Bu, M, Hu, N. and Zhao, L. (2023c), "An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge", Compos. Part B Eng., 248, 110378. https://doi.org/10.1016/j.compositesb.2022.110378.
  116. Wei, L. and Qing, H. (2022), "Bending, buckling and vibration analysis of Bi-directional functionally graded Circular/Annular microplate based on MCST", Compos. Struct., 292, 115633. https://doi.org/10.1016/j.compstruct.2022.115633.
  117. Wu, Q, Sun, Y. and Yin, W. (2024a), "Improve the stability of high resistance badminton net via reinforced light material: Development of industry and sport economy", Adv. Nano Res., 17(2), 167. https://doi.org/10.12989/anr.2024.17.2.167.
  118. Wu, W, Xia, R, Qian, G, Liu, Z, Razavi, N, Berto, F. and Gao, H. (2023), "Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures", Prog. Mater. Sci., 131, 101021. https://doi.org/10.1016/j.pmatsci.2022.101021.
  119. Wu, X, Ding, S, Niu, B, Xu, N. and Zhao, X. (2024b), "Predefined-time event-triggered adaptive tracking control for strict-feedback nonlinear systems with full-state constraints", Int. J. General Syst, 53(3), 352-380. https://doi.org/10.1080/03081079.2023.2276710.
  120. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib, 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  121. Yang, J, Yang, F, Zhou, Y, Wang, D, Li, R, Wang, G. and Chen, W. (2021), "A data-driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit", Inform. Sci., 566, 103-117. https://doi.org/10.1016/j.ins.2021.02.064.
  122. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomech. Eng., 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181.
  123. Ye, M, HangKong, O, Lin, Y, Ynag, Q, Xu, Q, Chen, T, Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263.
  124. Zhang, C, Liu, D.D, Jiang, Z.-X, Song, Y, Luo, Q. and Wang, X. (2022a), "Mechanism for the formation of natural fractures and their effects on shale oil accumulation in Junggar Basin, NW China", Int. J. Coal Geol, 254, 103973. https://doi.org/10.1016/j.coal.2022.103973.
  125. Zhang, C, Wen, H, Wang, X, Wen, L, Shen, A, Zhou, G, Wang, Q, She, M, Ma, C, Qiao, Z, Liu, D. and Ma, Y. (2024), "Formational stages of natural fractures revealed by U-Pb dating and C-O-Sr-Nd isotopes of dolomites in the Ediacaran Dengying Formation, Sichuan Basin, southwest China", GSA Bulletin, Early Publication. https://doi.org/10.1130/B37360.1.
  126. Zhang, C, Zhu, D, Luo, Q, Liu, L, Liu, D, Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032.
  127. Zhang, H, Zou, Q, Ju, Y, Song, C. and Chen, D. (2022b), "Distance-based Support vector machine to predict DNA N6-methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  128. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541.
  129. Zhang, P, Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded nonuniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  130. Zhang, P, Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  131. Zhang, T, Yang, T, Zhang, M, Bowen, C.R. and Yang, Y. (2020), "Recent progress in hybridized nanogenerators for energy scavenging", iScience, 23(11), 101689. https://doi.org/10.1016/j.isci.2020.101689.
  132. Zhang, X, Li, J, Cui, Y, Habibi, M, Ali, H.E, Albaijan, I. and Mahmoudi, T. (2023b), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293.
  133. Zhang, Z, Du, J. and Mahmoudi, T. (2023c), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355.
  134. Zhao, H, Wang, H, Chang, X, Ahmad, A.M. and Zhao, X. (2024), "Neural network-based adaptive critic control for saturated nonlinear systems with full state constraints via a novel event-triggered mechanism", Inform. Sci., 675, 120756. https://doi.org/10.1016/j.ins.2024.120756.
  135. ZhEng., Y.F, Zhou, Y, Wang, F. and Chen, C.P. (2024), "Nonlinear deformation analysis of magneto-electro-elastic nanobeams resting on elastic foundation by using nonlocal modified couple stress theory", Eur. J. Mech. A Solids, 103, 105158. https://doi.org/10.1016/j.euromechsol.2023.105158.
  136. Zhou, Y, Li, C, Zhuang, X. and Wang, Z. (2024a), "Meshless generalized finite difference method based on nonlocal differential operators for numerical simulation of elastostatics", Mathematics, 12(9). https://doi.org/10.3390/math12091316.
  137. Zhou, Z, Gao, T, Sun, J, Gao, C, Bai, S, Jin, G. and Liu, Y. (2024b), "An FDM-DEM coupling method based on REV for stability analysis of tunnel surrounding rock", Tunnell. Undergr. Space Technol., 152, 105917. https://doi.org/10.1016/j.tust.2024.105917.