DOI QR코드

DOI QR Code

Refined nonlocal strain gradient theory for mechanical response of cosine FG-GRNC laminated nanoshells rested on elastic foundation

  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • A.A. Daikh (Department of Technical Sciences, Center University Salhi Ahmed) ;
  • Amin Hamdi (Civil and Environmental Engineering Department, King Abdulaziz University) ;
  • Gamal S. Abdelhaffez (Department of Mining Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Azza M. Abdraboh (Physics Department, Faculty of Science, Benha University)
  • 투고 : 2021.08.11
  • 심사 : 2024.10.02
  • 발행 : 2024.10.25

초록

This paper investigates the mechanical behavior of a new type of functionally graded graphene-reinforced nanocomposite (FG-GRNC) doubly-curved laminated shells, referred to as cosine FG-GRNC. The study employs a refined higher-order shear deformation shell theory combined with a modified continuum nonlocal strain gradient theory. The effective Young's modulus of the GRNC shell in the thickness direction is determined using the modified Halpin-Tsai model, while Poisson's ratio and mass density are calculated using the rule of mixtures. The analysis includes two graphene-reinforced distribution patterns-FG-A CNRCs and FG-B CNRCs-along with uniform UD CNRCs. An enhanced Galerkin method is used to solve the governing equilibrium equations for the GRNC nanoshell, yielding closed-form solutions for bending deflection and critical buckling loads. The nanoshell is supported by an orthotropic elastic foundation characterized by three parameters. A detailed parametric analysis is performed to evaluate how factors such as the length scale parameter, nonlocal parameter, distribution pattern, GPL weight fraction, shell thickness, and shell geometry influence deflections and critical buckling loads.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grand no. (GPIP: 78-135-2024). The Authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  2. Akbas, S.D., Ersoy, H., Akgoz, B. and Civalek, O . (2021), "Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method", Mathematics, 9(9), 1048. https://doi.org/10.3390/math9091048
  3. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotube-reinforced composite nanobeams supported on nonlinear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389
  4. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
  5. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639
  6. Belarbi, M.O., Daikh, A.A., Garg, A., Hirane, H., Houari, M.S.A., Civalek, O . and Chalak, H.D. (2023), "Bending and free vibration analysis of porous functionally graded sandwich plates with various porosity distributions using an extended layerwise theory", Arch. Civil Mech. Eng., 23(1), 15. https://doi.org/10.1007/s43452-022-00551-0
  7. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. http://dx.doi.org/10.12989/anr.2018.6.2.147
  8. Civalek, O . and Avcar, M. (2022), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 38, 489-521. https://doi.org/10.1007/s00366-020-01168-8
  9. Daikh, A.A., Belarbi, M.O., Khechai, A., Li, L., Ahmed, H.M. and Eltaher, M.A. (2023), "Buckling of bi-coated functionally graded porous nanoplates via a nonlocal strain gradient quasi-3D theory", Acta Mechanica, 234, 3397-3420. https://doi.org/10.1007/s00707-023-03548-9
  10. Daikh, A.A., Belarbi, M.O., Khechai, A., Li, L., Ahmed, H.M. and Eltaher, M.A. (2023), "Buckling of bi-coated functionally graded porous nanoplates via a nonlocal strain gradient quasi-3D theory", Acta Mechanica, 234(8), 3397-3420. https://doi.org/10.1007/s00707-023-03548-9
  11. Daikh, A.A., Belarbi, M.O., Vinh, P.V., Li, L., Houari, M.S.A. and Eltaher, M.A. (2024), "Vibration analysis of tri-directionally coated plates via thickness-stretching and micro-structure-dependent modeling", Mech. Res. Commun., 135, 104221. https://doi.org/10.1016/j.mechrescom.2023.104221
  12. Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2019), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43
  13. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2022), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol., 18(10), 1778-1809. https://doi.org/10.1016/j.dt.2021.09.011
  14. Dastjerdi, S., Akgoz, B. and Civalek, O . (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236
  15. Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1121.
  16. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7
  17. Esmaeilzadeh, M., Golmakani, M.A., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. http://doi.org/10.12989/anr.2021.10.2.151
  18. Ghannadpour, S.A.M. and Moradi, F. (2020), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311
  19. Ghazwani, M.H., Alnujaie, A., Eltaher, M.A. and Van Vinh, P. (2024), "The role of nonlocality on low and high frequency behaviors of functionally graded sandwich nanoplates", ZAMM-J. Appl. Math. Mech., e202400088. https://doi.org/10.1002/zamm.202400088
  20. Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Modell., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038
  21. Guerroudj, M., Drai, A., Daikh, A.A., Houari, M.S.A., Aour, B., Eltaher, M.A. and Belarbi, M.O. (2024), "Size-dependent free vibration analysis of multidirectional functionally graded nanobeams via a nonlocal strain gradient theory", J. Eng. Math., 146(1), 20. https://doi.org/10.1007/s10665-024-10373-z
  22. Hasrati, E., Ansari, R. and Torabi, J. (2017), "Nonlinear forced vibration analysis of FG-CNTRC cylindrical shells under thermal loading using a numerical strategy", Int. J. Appl. Mech., 9(8), 1750108. https://doi.org/10.1142/S1758825117501083
  23. Jalaei, M.H. and Civalek, Ӧ. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
  24. Kutlu, H. and Omurtag, H.M. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundations using a mixed finite element method", Int. J. Mech. Sci., 65, 64-74. http://doi.org/10.1016/j.ijmecsci.2012.09.004
  25. Li, Y.P. and She, G.L. (2024), "Nonlinear transient response analysis of rotating carbon nanotube reinforced composite cylindrical shells with initial geometrical imperfection", Arch. Civil Mech. Eng., 24(3), 161. https://doi.org/10.1007/s43452-024-00973-y
  26. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  27. Mehrez, S., Karati, S.A., DolatAbadi, P.T., Shah, S.N.R., Azam, S., Khorami, M. and Assilzadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., 9(4), 221-235. http://doi.org/10.12989/anr.2020.9.4.221
  28. Mercan, K., Demir, C . and Civalek, O . (2016), "Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique", Curved Layered Struct., 3(1). https://doi.org/10.1515/cls-2016-0007
  29. Ninh, D.G., Ha, N.H., Long, N.T., Tan, N.C., Tien, N.D. and Dao, D.V. (2023), "Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core", Thin Wall. Struct., 182, 110161. https://doi.org/10.1016/j.tws.2022.110161
  30. Phon, N.D., Doan, T.N., Van Quang, D. and Van Minh, P. (2024), "Thermoelastic analysis of FG-CNTRC cylindrical shells with various boundary conditions and temperature-dependent characteristics using quasi-3D higher-order shear deformation theory", J. Thermoplast. Compos. Mater., 08927057241274332. https://doi.org/10.1177/08927057241274332
  31. Qu, Y., Jin, F. and Zhang, G. (2021), "Mechanically induced electric and magnetic fields in the bending and symmetric-shear deformations of a microstructure-dependent FG-MEE composite beam", Compos. Struct., 278, 114554. https://doi.org/10.1016/j.compstruct.2021.114554
  32. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265
  33. Saffari, P.R., Ismail, S.O., Thongchom, C., Sirimontree, S. and Jearsiripongkul, T. (2024), "Effect of magnetic field on vibration of electrorheological fluid nanoplates with FG-CNTRC layers", J. Vib. Eng. Technol., 12(3), 3335-3354. https://doi.org/10.1007/s42417-023-01048-7
  34. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. http://doi.org/10.12989/anr.2020.8.4.265
  35. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011
  36. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  37. Shen, H.S., Li, C. and Huang, X.H. (2023), "Assessment of negative Poisson's ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells", Mech. Based Des. Struct., 51(4), 1856-1880. https://doi.org/10.1080/15397734.2021.1880934
  38. Shen, H.S., Li, C. and Reddy, J. (2020), "Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson's ratio", Comput. Meth. Appl. Mech. Eng., 360, 112727. https://doi.org/10.1016/j.cma.2019.112727
  39. Sun, S., Guo, C., Feng, W. and Cao, D. (2022), "Nonlinear vibration analysis of CNT-reinforced functionally graded composite cylindrical shells resting on elastic foundations", Int. J. Non-Linear Mech., 143, 104037. https://doi.org/10.1016/j.ijnonlinmec.2022.104037
  40. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2020), "A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory", Compos. Struct., 234, 111695. https://doi.org/10.1016/j.compstruct.2019.111695
  41. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
  42. Thang, P.T., Thoi, T.N. and Lee, J. (2019), "Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections", Eur. J. Mech. A Solids, 73, 483-491. https://doi.org/10.1016/j.euromechsol.2018.10.008
  43. Tharwan, M.Y., Daikh, A.A., Assie, A.E., Alnujaie, A. and Eltaher, M.A. (2024), "Refined quasi-3D shear deformation theory for buckling analysis of functionally graded curved nanobeams on Winkler/Pasternak/Kerr foundations", Mech. Based Des. Struct., 52(9), 6101-6124. https://doi.org/10.1080/15397734.2023.2270043
  44. Uzun, B. and Yayli, M.O. (2024), "Accurate and efficient analytical simulation of free vibration for embedded nonlocal CNTRC beams with general boundary conditions", Physica B, 416139. https://doi.org/10.1016/j.physb.2024.416139
  45. Vu, H.N., Do, T.K.M., Vu, M.D., Vu, T.H., Pham, T.H. and Nguyen, T.P. (2023), "A new analytical approach for nonlinear buckling and postbuckling of torsion-loaded FG-CNTRC sandwich toroidal shell segments with corrugated core in thermal environments", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2023.2249458
  46. Wang, S., Hong, J., Wei, D. and Zhang, G. (2023), "Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory", Appl. Math. Mech., 44(10), 1803-1820. https://doi.org/10.1007/s10483-023-3042-6
  47. Wang, S., Hong, J., Yin, S. and Zhang, G. (2024), "Isogeometric analysis of magneto-electro-elastic functionally graded Mindlin microplates", Thin Wall. Struct., 198, 111740. https://doi.org/10.1016/j.tws.2024.111740
  48. Wu, H., Yang, J. and Kitipornchai, S. (2018), "Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates", Int. J. Mech. Sci., 135, 431-440. https://doi.org/10.1016/j.ijmecsci.2017.11.039
  49. Zhang, F. and Lu, W. (2024), "Non-linear free and forced vibration of bi-directional functionally graded truncated conical tube based on the nonlocal gradient strain theory", Waves Random Complex Med., 34(4), 2366-2393. https://doi.org/10.1080/17455030.2021.1956016
  50. Zhao, L.C., Xu, L. and Zeng, H.T. (2024), "Thermal buckling of temperature-dependent FG-CNT reinforced composite conical-conical joined shell using GDQ", Thin Wall. Struct., 205, 112320. https://doi.org/10.1016/j.tws.2024.112320