DOI QR코드

DOI QR Code

Closed form interaction for safety assessment of DWCNTs: Mechanical vibration

  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Emad Ghandourah (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2022.03.01
  • Accepted : 2024.09.05
  • Published : 2024.10.25

Abstract

Here, vibration of double walled carbon nanotubes is evaluated using Euler-Bernoulli beam model. These tubes are placed on Winkler elastic foundation. A simple Galerkin's approach is presented to solve the tube governing equations and for extracting of vibration eigen-frequencies of double walled carbon nanotubes. The procedure is easy for computer programming with various combinations of boundary conditions. The frequency influence is observed with different parameters. Effects of Winkler foundation versus frequencies with varying lengths is examined for a number of boundary conditions. It is noticed that the frequencies are lower for higher length on increasing the Winkler foundation. The frequencies of clamped-clamped are higher than that of clamped simply supported end condition. The obtained results are compared with some experimental ones.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/210/45.

References

  1. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  2. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  3. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  4. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  5. Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432
  6. Arshad, R., Jalil, M., Hussain, M. and Tounsi, A. (2024), "A novel framework for the construction of cryptographically secure S-boxes", Comput. Concr., 34(1), 79-91. https://doi.org/10.12989/cac.2024.34.1.079
  7. Asghar, S., Naeem, M.N. and Hussain, M. (2020), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
  8. Banoqitah, E.M., Hussain, M., Khadimallah, M.A., Ghandourah, E., Yahya, A., Basha, M. and Alshoaibi, A. (2022), "A simplified directly determination of natural frequencies of CNT: Via aspect ratio", Adv. Nano Res., 13(3), 207. https://doi.org/10.12989/anr.2022.13.3.207
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443
  10. Bocko, J. and Lengvarsky, P. (2014), "Vibration of single-walled carbon nanotubes by using nonlocal theory", Am. J. Mech. Eng., 2, 195-198. https://doi.org/10.12691/ajme-2-7-5.
  11. Chawis, T., Somchai, C. and Li, T. (2013), "Nonlocal theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.1016/j.physe.2010.01.035
  12. Civalek, O., Demir, C. and Akgoz, B. (2009), "Static analysis of single-walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci. (IJEAS), 2, 47-56. https://dergipark.org.tr/tr/download/article-file/217768
  13. Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019
  14. Demir, C. and Civalek, O. (2016), "Nonlocal finite element formulation for vibration", Int. J. Eng. Appl. Sci. (IJEAS), 8, 109-117. https://doi.org/10.1155/2020/8786373
  15. Du, G., Zhang, H., Yu, H., Hou, P., He, J., Cao, S., Wang, G. and Ma, L. (2024), "Study on automatic tracking system of microwave deicing device for railway contact wire", IEEE T Instrum. Measur., 73, 1-11. https://doi.org/10.1109/TIM.2024.3446638
  16. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
  17. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
  18. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  19. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
  20. Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177
  21. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  22. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007
  23. He, X.Q., Eisenberger, M. and Liew, K.M. (2006), "The effect of van der Waals interaction modeling on the vibration characteristics of multiwalled carbon nanotubes", J. Appl. Phys., 100(12), 124317. https://doi.org/10.1063/1.2399331
  24. Hussain, M. (2022), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concr. Constr., 14(1), 35-43. https://doi.org/10.12989/acc.2022.14.1.035
  25. Hussain, M. (2024), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, CRC Press.
  26. Hussain, M. and Naeem, M. N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
  27. Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020a), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307
  28. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020b), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concr., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
  29. Khadimallah, M.A., Hussain, M. and Harbaoui, I. (2020b), "Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control", Adv. Concr. Constr., 10(6), 499-507. https://doi.org/10.12989/acc.2020.10.6.499
  30. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020a), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
  31. Khan, I.A. (2016), "An investigation into the free vibrations of carbon nanotubes using analytical and finite element methods", Doctoral dissertation, Toronto Metropolitan University, Canada. https://doi.org/10.32920/ryerson.14654742.v1
  32. Kong, G., Sun, G., Liu, H. and Li, J. (2021), "Dynamic response of ballastless track XCC pile-raft foundation under train axle loads", J. Test. Evaluat., 49(3), 1691-1704. https://doi.org/10.1520/JTE20180032
  33. Li, J., Wu, X. and Wu, L. (2024), "A computationally-efficient analytical model for SPM machines considering PM shaping and property distribution", IEEE T Energy Convers., 39(2), 1034-1046. https://doi.org/10.1109/TEC.2024.3352577
  34. Li, X., Liu, Y., Ge, L. and Zhang, Z. (2024), "A large-stroke reluctance-actuated nanopositioner: Compliant compensator for enhanced linearity and precision motion control", IEEE/ASME T Mechatron., 29(4), 2947-2955. https://doi.org/10.1109/TMECH.2024.3405195
  35. Liu, F., Zhao, X., Zhu, Z., Zhai, Z. and Liu, Y. (2023), "Dual-microphone active noise cancellation paved with Doppler assimilation for TADS", Mech. Syst. Signal Proc., 184, 109727. https://doi.org/10.1016/j.ymssp.2022.109727
  36. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.12989/sem.2018.65.5.573
  37. Moghadam, R.M., Hosseini, S.A. and Salehi, M. (2014), "The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element", Physica E, 62, 80-89. https://doi.org/10.1063/1.2399331
  38. Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004.
  39. Muzamal, H. (2022), "Structural stability of laminated composite material for the effectiveness of half axial wave mode: Frequency impact", Adv. Concr. Constr., 14(5), 309-315. https://doi.org/10.12989/acc.2022.14.5.309
  40. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave-propagation in rotating nanotube", Results Phys., 1, 17-25. https://doi.org/10.1016/j.rinp.2011.06.002.
  41. Qazaq, A., Hussain, M., Mujalli, M. and Tounsi, A. (2022), "Fundamental computer assessment of ring support with exponent of trigonometric function: Safety geometrical perfection", Adv. Concr. Constr., 14(6), 381. https://doi.org/10.12989/acc.2022.14.6.381
  42. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  43. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  44. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  45. Salami, S.J., Boroujerdy, M.S. and Bazzaz, E. (2021), "Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs", Adv. Nano Res, 10(4), 385-395. https://doi.org/10.12989/anr.2021.10.4.385
  46. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
  47. Soltani, P., Kassaei, A., Taherian, M.M. and Farshidianfar, A, (2012), "Vibration of wavy single-walled carbon nanotubes based on nonlocal Euler Bernoulli and Timoshenko models", Int. J. Adv. Struct. Eng., 4(1), 3. https://doi.org/10.1186/2008-6695-4-3.
  48. Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753
  49. Swain, A., Roy, T. and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. Appl. Res. Mech, Eng., 2, 129-133A. https://doi.org/10.1063/1.4979112
  50. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581
  51. Toupin, R.A. (1964), "Theory of elasticity with couple stresses", Arch. Ration. Mech. Anal., 17, 85-112. https://doi.org/10.1007/BF00253050
  52. Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003.
  53. Wang, B., Deng, Z.C. and Zhang, K. (2013), "Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory", J. Appl. Math. Mech., 34, 269-280. https://doi.org/10.1007/s10483-013-1669-8
  54. Xu, K. Guo, X. and Ru, C. (2006), "Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces", J. Appl. Phys., 99(6), 064303. https://doi.org/10.1063/1.2179970
  55. Yayli, M.O. (2013), "Torsion of nonlocal bars with equilateral triangle cross sections", J. Computat. Theor. Nanosci., 10, 376-379. https://doi.org/10.1166/jctn.2013.2707
  56. Yuan, X., Wang, W., Pang, H. and Zhang, L. (2024), "Analysis of vibration characteristics of electro-hydraulic driven 3-UPS/S parallel stabilization platform", Chinese J. Mech. Eng., 37(1), 96. https://doi.org/10.1186/s10033-024-01074-w
  57. Zhang, C. (2023), "The active rotary inertia driver system for flutter vibration control of bridges and various promising applications", Sci. China Technol. Sci., 66(2), 390-405. https://doi.org/10.1007/s11431-022-2228-0
  58. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390
  59. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct, 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.29
  60. Zhang, Z. and Ma, X. (2024), "Friction-induced nonlinear dynamics in a spline-rotor system: Numerical and experimental studies", Int. J. Mech. Sci., 278, 109427. https://doi.org/10.1016/j.ijmecsci.2024.109427