DOI QR코드

DOI QR Code

Microorganisms profile variation in MHD Casson nanofluid: Chemical reaction and Arrhenius energy activation

  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Mohamed Amine Khadimallah (Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Humaira Sharif (Department of Mathematics, Government College University) ;
  • Elimam Ali (Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University)
  • 투고 : 2024.04.17
  • 심사 : 2024.08.17
  • 발행 : 2024.10.25

초록

In this paper, the simplified ordinary differential equations are solved with shooting technique. The concentration and microorganism slip boundary conditions are implemented. Non-linear expression is reduced via non-dimensional variables. The microorganism distribution declines by increasing Lewis number and microorganism slip parameter. Behavior of distinct influential parameters viz: Eckert number, bioconvected Lewis number, bioconvected Peclet number, microorganisms slip parameter are investigated graphically and analyzed for concentration and microorganism. Enhanced concentration is correlated with energy activation. An acceptable agreement is reached when the numerical technique is compared to the existing literature. The magnitude of microorganism transfer rate shows decreasing behavior for higher values of slip parameters.

키워드

과제정보

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1446)

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://doi.org/10.1007/BF02614150
  3. Akgoz, B. and Civalek, O. (2011)", Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  4. Arshad, R., Jalil, M., Hussain, M. and Tounsi, A. (2024), "A novel framework for the construction of cryptographically secure Sboxes", Comput. Concr., 34(1), 79-91. https://doi.org/10.12989/cac.2024.34.1.079
  5. Asghar, S., Naeem, M.N. and Hussain, M. (2020), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
  6. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179
  7. Banoqitah, E.M., Hussain, M., Khadimallah, M.A., Ghandourah, E., Yahya, A., Basha, M. and Alshoaibi, A. (2022), "A simplified directly determination of natural frequencies of CNT: Via aspect ratio", Adv. Nano Res., 13(3), 207. https://doi.org/10.12989/anr.2022.13.3.207
  8. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  10. Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://doi.org/10.2514/3.49427
  11. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133
  12. Chen, W., Ji, C., Alam, M. M. and Xu, D. (2019b)", Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043
  13. Chen, X., Zhong, S., Liu, T., Ozer, O. and Gao, G. (2024), "Manipulation of the flow induced by afterbody vortices using sweeping jets", Phys. Fl., 36(3), 035147. https://doi.org/10.1063/5.0196427
  14. Civalek, O . (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  15. Derakhshandeh, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475
  16. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
  17. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
  18. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
  19. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479
  20. Hussain, M. (2022), "Controlling of ring based structure of rotating FG shell: Frequency distribution", Adv. Concr. Constr., 14(1), 35-43. https://doi.org/10.12989/acc.2022.14.1.035
  21. Hussain, M. (2024), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, CRC Press.
  22. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
  23. Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020a), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307
  24. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020b), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concr., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
  25. Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29. https://doi.org/10.5897/IJPS12.093
  26. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", Appl. Math. Mod., 32, 2059-2066. http://doi.org/10.1016/j.apm.2007.06.036
  27. Khadimallah, M.A., Hussain, M. and Harbaoui, I. (2020b), "Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control", Adv. Concr. Constr., 10(6), 499-507. https://doi.org/10.12989/acc.2020.10.6.499
  28. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020a), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137
  29. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
  30. Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. and Tech., 99, 57-70. http://doi.org/10.14257/ijast.2017.99.05.
  31. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophys., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
  32. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl Nanosci, 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0
  33. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001
  34. Qazaq, A., Hussain, M., Mujalli, M. and Tounsi, A. (2022), "Fundamental computer assessment of ring support with exponent of trigonometric function: Safety geometrical perfection", Adv. Concr. Constr., 14(6), 381. https://doi.org/10.12989/acc.2022.14.6.381
  35. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073
  36. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://doi.org/10.1590/S0104-66322010000400017.
  37. Rehman, A. (2015) "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math, 4(6), 424-430. http://doi.org/10.11648/j.acm.20150406.15
  38. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. 10.12989/anr.2019.7.4.265
  39. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555
  40. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
  41. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090
  42. Selmi, A. and Hassis, H. (2021), "Vibration analysis of post-buckled fluid-conveying functionally graded pipe", Compos. Part C, 4, 100117. https://doi.org/10.1016/j.jcomc.2021.100117
  43. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251
  44. Su, Y., Iyela, P.M., Zhu, J., Chao, X., Kang, S. and Long, X. (2024), "A Voronoi-based gaussian smoothing algorithm for efficiently generating RVEs of multi-phase composites with graded aggregates and random pores", Mater. Des., 244, 113159. https://doi.org/10.1016/j.matdes.2024.113159
  45. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. http://doi.org/10.1177/1045389X231222999
  46. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phys. Fl, 31, 466-468. https://doi.org/10.1063/1.866827
  47. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05
  48. Yao, Y., Zhou, L., Huang, H., Chen, Z. and Ye, Y. (2023), "Cyclic performance of novel composite beam-to-column connections with reduced beam section fuse elements", Structures, 50, 842-858. https://doi.org/10.1016/j.istruc.2023.02.054
  49. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023), "Experimental and simulative analysis of flexural performance in UHPC-RC hybrid beams", Constr. Build. Mater., 436, 136889. https://doi.org/10.1016/j.conbuildmat.2024.136889
  50. Zhu, C., Al-Dossari, M., Rezapour, S., Shateyi, S. and Gunay, B. (2024), "Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation", Results Phys., 56, 107298. https://doi.org/10.1016/j.rinp.2023.107298