DOI QR코드

DOI QR Code

Reuse of reverse osmosis membranes for wastewater treatment (Beni Saf Water Company)

  • Khadidja Benyahia (Department of Process and Materials Engineering, National Polytechnic School) ;
  • Mouhssin Khiari (Department of Process and Materials Engineering, National Polytechnic School) ;
  • Mourad Berrabah (Department of Process and Materials Engineering, National Polytechnic School)
  • Received : 2023.05.13
  • Accepted : 2024.09.05
  • Published : 2024.10.25

Abstract

The current research project focuses on the feasibility of recycling and reusing utilized osmosis membranes from the Beni Saf water seawater desalination station in the province of Ain Temouchent. The composite Reverse Osmosis (RO) membrane, which is referenced BW30-400-FR and manufactured by Dow Filmtec TM, is used for all the tests. Three solvents are tested: potassium permanganate (KMnO4), sodium hydroxide (NaOH), hydrogen peroxide (H2O2), and the mixture of NaOH with KMnO4 for the degradation of the active layer of the RO membrane. A frontal filtration of wastewater using these modified membranes was carried out. An analysis of the physicochemical properties of the filtrate was performed using a spectrophotometer. The results of the frontal filtration performed under perpendicular pressure using a filtration ramp show that the membranes immersed in the NaOH and KMnO4 mixture for 24 hours produced a higher hydraulic flux compared to those immersed in NaOH and H2O2. At the end of the proposed treatment, the samples are analyzed by scanning electron microscopy (SEM) in addition to analyzing the clogging powder by EDX. The obtained results show the effectiveness of the proposed treatment for the degradation of the active layer in order to transform it into microfiltration and/or ultrafiltration.

Keywords

References

  1. Abdel-Fatah, Mona A., Khater, E.M.H., Hafez, A.I. and Shaaban, A.F. (2020), "Performance of fouled NF membrane as used for textile dyeing wastewater", Membr. Water Treat., 11(2), 111-121. https://doi.org/10.12989/mwt.2020.11.2.111.
  2. Aguera, A., Fernandez, A.R., Piedra, L. Mezcua, M. (2003) "Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry", Analytica Chimica, 480, 181-340. https://doi/10.1016/S0003-2670(03)00040-0
  3. Aguiar-Oliveira, M., Campos, A., Matos, A., Rigotto, C., Sotero-Martins, A., Teixeira, P.F. and Siqueira, M.M. (2020) "Wastewater- Based Epidemiology (WBE) and viral detection in polluted surface water: A valuable tool for Covid-19 surveillance-A brief review", Int. J. Environ. Res. Publ. Health, 17, 9251. https://doi/10.3390/ijerph17249251
  4. Elorm, O.E., Sudesh, R. (2020), "Membrane technologies in wastewater treatment: A review", Membranes, 10(5), 89. https://doi/10.3390/membranes10050089.
  5. He, Y., Miao, J., Jiang, Z., Tu, K. and Zhang, R. (2019), "Improving the anti-fouling property and permeate flux of hollow fiber composite nanofiltration membrane using β-cyclodextrin", Sci. Rep., 9(1), 12345. https://doi.org/10.1038/s41598-019-48908-5.
  6. Hongjun, L. and Meijia, Z (2023), "Membrane technologies for wastewater treatment and recycling", Membranes, 13(6), 558. https://doi.org/10.3390/membranes13060558.
  7. Jung, J., Shin, B., Lee, J.W., Park, K.Y., Won, S. and Cho, J. (2019), "Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis", Membr. Water Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239
  8. La Farre, M. La., Perez,.S ,Kantiani, L., Barcelo,. D. (2008) "Fate and toxicity of emerging pollutants", TrAC Trends Anal. Chem., 27, 991-1007. https://doi.org/10.1016/j.trac.2008.09.010
  9. Lawler, W., (2020),"Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse", Desalination, 13(3), 334. https://doi.org/10.1016/j.desal.2020.114339.
  10. Lorenzo, M. and Pico, Y. (2019) "Wastewater-based epidemiology: Current status and future prospects", Curr. Op. Environ. Sci. Health, 9, 77-84. https://doi.org/10.1016/j.coesh.2019.05.007
  11. Moradi, R., Shariaty-Niassar, M., Pourkhalili, N., Mehrizadeh, M. and Niknafs, H. (2018), "PVDF/h-BN hybrid membranes and their application in desalination through agm", Membr. Water Treat., 9(4), 221-231. https://doi.org/10.12989/mwt.2018.9.4.221.
  12. Moron-Lopez, J., Nieto-Reyes, L., Aguado, S., El-Shehawy, R. and Molina, S. (2019), "Recycling of end-of-life reverse osmosis membranes for membrane biofilm reactors (MBfRs)", Chemosphere, 231, 103-112. https://doi.org/10.1016/j.chemosphere.2019.05.108.
  13. Khanzada, N.K., Al-Juboori, R.A., Khatri, M., Ahmed, F.E., Ibrahim, Y. and Hilal, N. (2024), "Sustainability in membrane technology: Membrane recycling and fabrication using recycled waste", Membranes, 14(2), 52. https://doi.org/10.3390/membranes14020052
  14. Orvos, D.R., Versteeg, D.J., Inauen, J. and Capdevielle, M. (2002), "Aquatic toxicity of triclosan", Environ. Toxicol. Chem., 1(7),1338-1349. https://doi.org/10.1002/etc.5620210703
  15. Ponte, P.I.P., Alves, S.P., Bessa, R.J.B., Ferreira, L.M.A., Gama, L.T., Bras, J.L.A., Fontes, C.M.G.A., Prates, J.A.M. (2008), "Influence of pasture intake on the fatty acid composition, and cholesterol, tocopherols, and tocotrienols content in meat from free-range broilers", Poult. Sci., 87(1), 80-88. https://doi.org/10.3382/ps.2007-00148
  16. Prevost, B., Lucas, F.S., Ambert-Balay, K., Pothier, P., Moulin, L., Wurtzer, S. (2015) "Deciphering the diversities of astro-viruses and noroviruses in wastewater treatment plant effluents by a high-throughput sequencing method", Appl. Environ. Microbiol., 81, 7215-22. https://doi.org/10.1128/AEM.02076-15
  17. Saleh, J.M., Ali, E.M., Orfi, J.A. and Najib, A.M. (2020), "Water cost analysis of different membrane distillation process configurations for brackish water desalination", Membr. Water Treat., 11(5), 363-374. https://doi.org/10.12989/mwt.2020.11.5.363.
  18. Stuart, M., Lapworth, D., Crane, E., Hart, A. (2012) "Review of risk from potential emerging contaminants in UK groundwater", Sci. Total Environ., 416, 1-21. https://doi.org/10.1016/j.scitotenv.2011.11.072
  19. Vedrana, P., Dejan, M., Natasa, L., Svetlana, P. (2023), "New insights into the fouling of a membrane during the ultrafiltration of complex organic-inorganic feed water", Membranes, 13(3), 334. https://doi.org/10.3390/membranes13030334.
  20. Wurtzer, S., Marechal, V., Mouchel, J.M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J.L. and Moulin, L. (2020), "Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020", Eur. Commun. Disease Bull., 25(50). https://doi.org/10.2807/1560-7917.ES.2020.25.50.2000776
  21. Wolfel, R., Corman, V.M., Guggemos, S., (2020) "Virological assessment of hospitalized patients with COVID-2019", Nature, 581, 465-9. https://doi/10.1038/s41586-020-2984-3
  22. Ying, G.G., Kookana, R.S. and Dillon, P. (2003), "Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material", Water Res., 37, 3785-3791. https://doi.org/10.1016/S0043-1354(03)00261-6