DOI QR코드

DOI QR Code

Performance Improvement of a Darrieus Hydrokinetic Turbine by Interaction and Diffusion Effects

상호작용과 확산 효과를 이용한 다리우스 유체동력 터빈의 성능 향상

  • Dasom Jeong (Department of Mechanical System Engineering, Jeju National University) ;
  • Jin-Soon Park (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science and Technology) ;
  • Jin Hwan Ko (Department of Mechanical System Engineering, Jeju National University)
  • 정다솜 (제주대학교 기계시스템공학과) ;
  • 박진순 (한국해양과학기술원 해양공간개발.에너지 연구부) ;
  • 고진환 (제주대학교 기계시스템공학과)
  • Received : 2024.01.08
  • Accepted : 2024.03.11
  • Published : 2024.03.30

Abstract

In this study, first, we adopted a twin configuration of a Darrieus hydrokinetic turbines that can bring about an improvement in efficiency through positive interaction and obtained the optimal shape through parametric analysis of the small-scale turbine model by computational fluid dynamic simulations. Next, the effect of performance improvement was examined for symmetrical and asymmetrical ducts. The results show that the asymmetrical duct that utilizes diffusion effects has a comparative advantage in terms of efficiency and drag over the symmetrical one. However, the advantage of the Darrieus turbine, which has flow-directional independency, is lost in the case of the presented configuration; thus, we introduced the idea of a passive yaw-controller that adapts to the variation of the flow-direction that does not require additional energy consumption. In conclusion, such efforts and adjustments to enhance the performance of the Darrieus turbine by utilizing the interaction and diffusion effects discussed in this study will be helpful in securing competitiveness against other types of hydrokinetic turbines.

Keywords

Acknowledgement

본 연구는 2023년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다

References

  1. Ko JH, Park J-S, Han I (2015) Automatic diffuser for tidal stream power generation, Domestic patent, 10-1493457 
  2. Ko JH, Sitorus PE, Kim J (2019) Effect of variable shape blade on the performance of Darrieus turbine. J Korean Soc Mar Environ Energ 22(1):1-7 
  3. Kim J, Park J-S, Ko JH (2019) Experimental study on interaction effect of Darrieus tidal stream turbines Ocean Polar Res 41(3):193-202 
  4. Heo M-W, Kim D-H, Park J-S (2020) Investigation on performance characteristics of dual vertical axis turbine of 100 kW class tidal energy convertor. Trans Kor Hydrog New Energ Soc 31(1):151-159 
  5. Heo M-W, Kim D-H, Park J-S (2021) Design of hybrid turbine combining darrieus and savonius for tidal current energy convertor. KSFM J Fluid Mach 24(6):37-46 
  6. Amarta Z, Ismail A (2021) Performance evaluation of vertical axis hydrokinetic turbine (VAHT) helical blade using duct system for low current speed application. IOP Conf Ser: Mater Sci Eng 1034:012049 
  7. Ambarita EE, Harinaldi, Azhari R, Irwansyah R (2022) Experimental study on the optimum design of diffuser-augmented horizontal-axis tidal turbine. Clean Energ 6(5):776-786 
  8. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2007) Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng 34(7):1013-1020 
  9. Dai YM, Gardiner N, Lam WH (2010) CFD Modelling strategy of a straight-bladed vertical axis marine current turbine. In: Proceedings of the Twentieth International Offshore and Polar Engineering Conference. Bejing, China, pp 767-773 
  10. Han SH, Park JS, Lee K-S, Park WS, Yi JH (2013) Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment. Ocean Eng 65 (1):83-89 
  11. Huang B, Zhu GJ, Kanemoto T (2016) Design and performance enhancement of a bi-directional counter-rotating type horizontal axis tidal turbine. Ocean Eng 128:116-123 
  12. Khalid SS, Zhang L, Sheng Q-H (2013) CFD simulation of twin vertical axis tidal turbines system. Int J Res Appl Sci Eng Technol 5(1):233-238 
  13. Kirke BK (2011) Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew Energ 36(11):3013-3022 
  14. Ko D-H, Chung J, Lee K-S, Park J-S, Yi J-H (2019) Current Policy and technology for tidal current energy in Korea. Energies 12(9):1807 
  15. Li Y, Calisal M (2000a) Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew Energ 35:2325-2334 
  16. Li Y, Calisal M (2000b) Modeling of twin-turbine systems with ve rtical axis tidal curre nt turbine s: Part I-Powe r output. Ocean Eng 37:627-637 
  17. Liu W, Liu L, Wu H, Che n Y, Zhe ng X, Li N, Zhang Z (2023) Performance analysis and offshore applications of the diffuser augmented tidal turbines. Sh Offshore Struct 18(1):68-77 
  18. Runge S, Stoesser T, Morris E, White M (2018) Technology readiness of a vertical-axis hydro-kinetic turbine. J Power Energ Eng 6:63-85