DOI QR코드

DOI QR Code

A Process-based Relative Sea-level Budget Along the Coast of Korean Peninsula Over 1993-2018

1993-2018년 한반도 연안 상대해수면 수지 분석

  • Hyeonsoo Cha (Faculty of Earth and Marine Convergence, Earth and Marine Science Major, Jeju National University) ;
  • Seongbae Jo (Faculty of Earth and Marine Convergence, Earth and Marine Science Major, Jeju National University) ;
  • Jae-Hong Moon (Faculty of Earth and Marine Convergence, Earth and Marine Science Major, Jeju National University)
  • 차현수 (제주대학교 지구해양융합학부 지구해양전공) ;
  • 조성배 (제주대학교 지구해양융합학부 지구해양전공) ;
  • 문재홍 (제주대학교 지구해양융합학부 지구해양전공)
  • Received : 2024.01.17
  • Accepted : 2024.03.12
  • Published : 2024.03.30

Abstract

Due to physical processes varying in space and time, regional sea-level rise (SLR) significantly deviates from the global mean. Thus, understanding and quantifying the contribution of each process to regional sea-level change is crucial to prevent low-lying inundation in preparation for future ocean conditions. In this study, we assessed to what degree sterodynamic (SD) effects (i.e., density-driven steric expansion and mass redistribution due to ocean circulation), contemporary mass redistribution (CMR), and glacial isostatic adjustment (GIA) contribute relative sea-level rise around the Korean coast from 1993 to 2018, with independent observations and reanalysis datasets. The assessment showed that the tide gauge-observed SLR trend can be explained by the sum of each component at 16 of 19 locations. The major contributors to relative SLR are SD effects of 2.03±0.27 mm/yr and CMR components of 1.31±0.05 mm/yr, while GIA drives sea-level decreasing of -0.27±0.15 mm/yr on the Korean coast. It was also found that the spatial deviations of SLR are primarily caused by the SD effects. In addition, the evaluation of vertical land motion (VLM) based on altimetry and tide gauge indicates that most tide gauge locations have experienced uplift during at least altimetry period, whereas Wido station has experienced particularly high rate of subsidence that contributed to the SLR acceleration. Further examination of the impact of earth deformation due to CMR, GIA, and local process on the VLM trends demonstrated that the GIA and CMR contribute to land uplift with the average of 0.35±0.15 mm/yr and 0.17±0.05 mm/yr, respectively. On the other hand, the local processes like groundwater depletion and sediment compaction showed a wide range of variability, from -1.61 to 0.58 mm/yr, indicating a significant contribution to regional differences in vertical land motion.

Keywords

Acknowledgement

이 논문은 2023년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. MOF (2021) Analysis and prediction of Long-term sea-level change in response to climate change around Korean Peninsula, Korea Hydrographic and Oceanographic Agency, 11-1192136-000650-01, 280 p 
  2. Camargo CM, Riva RE, Hermans TH, Schutt EM, Marcos M, Hernandez-Carrasco I, Slangen A (2023) Regionalizing the sea-level budget with machine learning techniques. Ocean Sci 19(1):17-41 
  3. Caron L, Ivins ER, Larour E, Adhikari S, Nilsson J, Blewitt G (2018) GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys Res Lett 45(5): 2203-2212 
  4. Cazenave A, Dieng HB, Meyssignac B, Von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea-level rise. Nature Clim Change 4(5):358-361 
  5. Cha H, Moon JH, Kim T, Song YT (2023). A process-based assessment of the sea-level rise in the northwestern Pacific marginal seas. Commun Earth Environ 4(1):300 
  6. Cha SC, Moon JH, Song YT (2018) A recent shift toward an El Nino-like ocean state in the tropical Pacific and the resumption of ocean warming. Geophys Res Lett 45(21): 11885-11894 
  7. Chen N, Han G, Yang J (2018) Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries. Cont Shelf Res 152:27-34 
  8. Cheng L, Trenberth KE, Fasullo J, Boyer T, Abraham J, Zhu J (2017) Improved estimates of ocean heat content from 1960 to 2015. Science Adv 3(3):e1601545 
  9. Choi BJ, Haidvogel DB, Cho YK (2009) Interannual variation of the Polar Front in the Japan/East Sea from summertime hydrography and sea level data. J Marine Syst 78(3):351-362 
  10. Frederikse T, Landerer F, Caron L, Adhikari S, Parkes D, Humphrey VW, Dangendorf S, Hogarth P, Zanna L, Cheng L (2020) The causes of sea-level rise since 1900. Nature 584(7821):393-397 
  11. Frederikse T, Lan derer FW, Caron L (2019) The imprints of contemporary mass redistribution on local sea level and vertical land motion observations. Solid Earth 10(6):1971-1987 
  12. Gan J, Kun g H, Cai Z, Liu Z, Hui C, Li J (2022) Hotspots of the stokes rotating circulation in a large marginal sea. Nature Commun 13(1):2223 
  13. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res-Oceans 118(12):6704-6716
  14. Gregory JM, Griffies SM, Hughes CW, Lowe JA, Church JA, Fukimori I, Gomez N, Kopp RE, Landerer F, Cozannet GL (2019) Concepts and terminology for sea level: mean, variability and change, both local and global. Surveys in Geophysics 40:1251-1289 
  15. Hamlington BD, Cheon SH, Thompson PR, Merrifield MA, Nerem RS, Leben RR, Kim KY (2016) An ongoing shift in Pacific Ocean sea level. J Geophys Res-Oceans 121(7): 5084-5097 
  16. Han G, Ma Z, Bao H, Slangen A (2014) Regional differences of relative sea level changes in the Northwest Atlantic: Historical trends and future projections. J Geophys ResOceans 119(1):156-164 
  17. Han G, Ma Z, Chen N, Yan g J, Chen N (2015) Coastal sea level projections with improved accounting for vertical land motion. Sci Rep 5(1):16085 
  18. Harvey TC, Hamlington BD, Frederikse T, Nerem RS, Piecuch CG, Hammond WC, Blewitt G, Thompson PR, Bekaert DPS, Landerer FW (2021) Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Commun Earth Environ 2(1):233 
  19. Ishii M, Fukuda Y, Hirahara S, Yasui S, Suzuki T, Sato K (2017) Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13:163-167 
  20. Jeen SW, Kang J, Jung H, Lee J (2021) Review of seawater intrusion in western coastal regions of South Korea. Water 13(6):761 
  21. Kim KH, Park KD, Lim CH, Han DH (2011) Analysis of absolute sea-level changes around the Korean Peninsula by correcting for glacial isostatic adjustment. J Korean Earth Sci Soc 32(7):719-731 
  22. Lee K, Nam S, Cho YK, Jeong KY, Byun DS (2022) Determination of long-term (1993-2019) sea level rise trends around the Korean Peninsula using ocean tide-corrected, multi-mission satellite altimetry data. Front Mar 9:810549 
  23. Moon JH, Song YT, Bromirski PD, Miller AJ (2013) Multidecadal regional sea level shifts in the Pacific over 1958-2008. J Geophys Res-Oceans 118(12):7024-7035 
  24. Ostanciaux E, Husson L, Choblet G, Robin C, Pedoja K (2012) Present-day trends of vertical ground motion along the coast lines. Earth-Sci Rev 110(1-4):74-92 
  25. Peltier WR, Argus DF, Drummond R (2018) Comment on "An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model" by Purcell et al. J Geophys Res-Sol Ea 123(2):2019-2028 
  26. Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31(9) 
  27. Royston S, Dutt Vishwakarma B, Westaway R, Rougier J, Sha Z, Bamber J (2020) Can we resolve the basin-scale sea level trend budget from GRACE ocean mass?. J Geophys Res-Oceans 125(1):e2019JC015535 
  28. Tamisiea ME, Mitrovica JX (2011). The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography 24(2):24-39 
  29. Valle-Rodriguez J, Trasvina-Castro A (2020) Sea level anomaly measurements from satellite coastal altimetry and tide gauges at the entrance of the Gulf of California. Adv Space Res 66(7):1593-1608 
  30. Wang J, Church JA, Zhang X, Gregory JM, Zanna L, Chen X (2021) Evaluation of the local sea-level budget at tide gauges since 1958. Geophys Res Lett 48(20):e2021GL 094502 
  31. Watson PJ (2019) Updated mean sea-level analysis: South Korea. J Coastal Res 35(2):241-250 
  32. Watson PJ, Lim HS (2020) An update on the status of mean sea level rise around the Korean peninsula. Atmosphere 11(11):1153 
  33. WCRP (2018) Global sea-level budget 1993-present. Earth Sys Sci Data 10(3):1551-1590 
  34. Yang Y, Feng W, Zhong M, Mu D, Yao Y (2022) Basinscale sea level budget from satellite altimetry, satellite gravimetry, and Argo data over 2005 to 2019. Remote Sens 14(18):4637 
  35. Yoon ST, Chang KI, Na H, Minobe S (2016) An east-west contrast of upper ocean heat content variation south of the subpolar front in the East/Japan Sea. J Geophys ResOceans 121(8):6418-6443 
  36. Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39(21)