DOI QR코드

DOI QR Code

업무 환경에서 생성형 AI 사용 의도에 영향을 미치는 촉진 요인과 저해 요인 분석

Enablers and Inhibitors of Generative AI Usage Intentions in Work Environments

  • 박준성 (연세대학교 산업공학과) ;
  • 박희준 (연세대학교 산업공학과)
  • 투고 : 2024.08.02
  • 심사 : 2024.08.07
  • 발행 : 2024.09.30

초록

Purpose: This study aims to investigate the factors influencing the adoption of Generative AI in the workplace, focusing on both enablers and inhibitors. By employing the dual factor theory, this research examines how knowledge support, customization, entertainment, perceived risk, realistic threat, and identity threat impact the intention to adopt Generative AI technologies such as ChatGPT. Methods: Data were collected from 192 participants via MTurk, all of whom had experience using Generative AI. The survey was conducted in June 2024, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) to ensure the validity and reliability of the measurement model. Attention-check questions were used to ensure data quality, and participants provided demographic information at the end of the survey. Results: : The findings reveal that knowledge support and entertainment significantly enhance the intention to adopt Generative AI, whereas realistic threat poses a substantial barrier. Customization, perceived risk, and identity threat did not significantly affect adoption intentions. Conclusion: This study contributes to the literature by addressing the gap in understanding the adoption mechanisms of Generative AI in professional settings. It highlights the importance of promoting AI's knowledge support and entertainment capabilities while addressing employees' concerns about job security. Organizations should emphasize these benefits and proactively mitigate perceived threats to foster a positive reception of Generative AI technologies. The findings offer practical implications for enhancing user acceptance and provide a foundation for future research in this area.

키워드

참고문헌

  1. Adiasto K. 2024. SustAInable Employability: Sustainable Employability in the Age of Generative Artificial Intelligence. Group and Organization Management, 10596011241238792. https://doi.org/10.1177/10596011241238792
  2. Adiguzel T. Kaya MH, & Cansu FK. 2023. Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology.
  3. Aguinis H, Villamor I, & Ramani RS. 2021. MTurk research: Review and recommendations. Journal of Management 47(4):823-837.
  4. Ashfaq M, Yun J, Yu S, & Loureiro SMC. 2020. I, Chatbot: Modeling the determinants of users' satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics 54:101473. https://doi.org/10.1016/j.tele.2020.101473.
  5. Ayinde L, Wibowo MP, Ravuri B, & Emdad FB. 2023. ChatGPT as an important tool in organizational management: A review of the literature. Business Information Review 40(3):137-149. https://doi.org/10.1177/02663821231187991
  6. Bianchi C, & Andrews L. 2018. Consumer engagement with retail firms through social media: an empirical study in Chile. International Journal of Retail & Distribution Management 46(4):364-385. https://doi.org/10.1108/IJRDM-02-2017-0035.
  7. Bouhia M, Rajaobelina L, PromTep S, Arcand M, & Ricard L. 2022. Drivers of privacy concerns when interacting with a chatbot in a customer service encounter. International Journal of Bank Marketing 40(6):1159-1181. https://doi.org/10.1108/IJBM-09-2021-0442.
  8. Cao J, & Song Z. 2024. An incoming threat: the influence of automation potential on job insecurity. Asia-Pacific Journal of Business Administration, ahead-of-print(ahead-of-print). https://doi.org/10.1108/APJBA-07-2022-0328.
  9. Cenfetelli, Ronald T. 2004. Inhibitors and Enablers as Dual Factor Concepts in Technology Usage. Journal of the Association for Information Systems 5(11). https://doi.org/10.17705/1jais.00059.
  10. Cheung ML, Pires G, Rosenberger III PJ, Leung WKS, & Chang MK. 2021. The role of social media elements in driving co-creation and engagement. Asia Pacific Journal of Marketing and Logistics 33(10):1994-2018. https://doi.org/10.1108/APJML-03-2020-0176.
  11. Cheung ML, Pires G, & Rosenberger PJ. 2020. The influence of perceived social media marketing elements on consumer-brand engagement and brand knowledge. Asia Pacific Journal of Marketing and Logistics 32(3):695-720. https://doi.org/10.1108/APJML-04-2019-0262.
  12. Cohen J. 1988. Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale.
  13. Craig K, Thatcher JB, & Grover V. 2019. The IT Identity Threat: A Conceptual Definition and Operational Measure. Journal of Management Information Systems 36(1):259-288. https://doi.org/10.1080/07421222.2018.1550561.
  14. Dabbous A, Aoun Barakat K, Merhej Sayegh M. 2022. Enabling organizational use of artificial intelligence: an employee perspective. Journal of Asia Business Studies 16(2):245-266. https://doi.org/10.1108/JABS-09-2020-0372.
  15. Davis FD. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly 13(3):319-340. https://doi.org/10.2307/249008.
  16. Dwivedi YK, Kshetri N, Hughes L, Slade EL, Jeyaraj A, Kar AK, Baabdullah AM, Koohang A, Raghavan V, Ahuja M, Albanna H, Albashrawi MA, Al-Busaidi AS, Balakrishnan J, Barlette Y, Basu S, Bose I, Brooks L, Buhalis D, & Wright R. 2023. Opinion Paper: So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management 71:102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642.
  17. Fahad SA, Salloum SA, & Shaalan K. 2024. The Role of ChatGpt in Knowledge Sharing and Collaboration Within Digital Workplaces: A Systematic Review. In A. Al-Marzouqi, S. A. Salloum, M. Al-Saidat, A. Aburayya, B. Gupta (Eds.), Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom (pp. 259-282). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52280-2_17.
  18. Fornell C, & Larcker DF. 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18(1):39-50. https://doi.org/10.1177/002224378101800104.
  19. Giordano V, Spada I, Chiarello F, & Fantoni G. 2024. The impact of ChatGPT on human skills: A quantitative study on twitter data. Technological Forecasting and Social Change 203:123389. https://doi.org/10.1016/j.techfore.2024.123389.
  20. Hair JF, Risher JJ, Sarstedt M, & Ringle CM. 2019. When to use and how to report the results of PLS-SEM. European Business Review 31(1):2-24. https://doi.org/10.1108/EBR-11-2018-0203.
  21. Halaweh M. 2023. ChatGPT in education: Strategies for responsible implementation.
  22. Herzberg F, Mausner B, & Snyderman BB. 1959. The motivation to work. Wiley. New York, NY.
  23. Huang HL, Cheng LK, Sun PC, & Chou SJ. 2021. The Effects of Perceived Identity Threat and Realistic Threat on the Negative Attitudes and Usage Intentions Toward Hotel Service Robots: The Moderating Effect of the Robot's Anthropomorphism. International Journal of Social Robotics 13(7):1599-1611. https://doi.org/10.1007/s12369-021-00752-2.
  24. Hussain K, Khan ML, and Malik A. 2024. Exploring Audience Engagement with ChatGPT-Related Content on YouTube: Implications for Content Creators and AI Tool Developers. Digital Business, 4(1): 100071. https://doi.org/10.1016/j.digbus.2023.100071.
  25. Isidore C. 2023. AI and actors strike: What it means for the entertainment industry. CNN. Retrieved from https://www.cnn.com/2023/07/18/business/ai-actors-strike/index.html.
  26. Jing Y, Wang H, Chen X, & Wang C. 2024. What factors will affect the effectiveness of using ChatGPT to solve programming problems? A quasi-experimental study. Humanities and Social Sciences Communications 11(1):319. https://doi.org/10.1057/s41599-024-02751-w.
  27. Jo H, & Park DH. 2023. AI in the Workplace: Examining the Effects of ChatGPT on Information Support and Knowledge Acquisition. International Journal of Human-Computer Interaction 1-16. https://doi.org/10.1080/10447318.2023.2278283.
  28. Kasilingam DL. 2020. Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society 62:101280. https://doi.org/10.1016/j.techsoc.2020.101280.
  29. Lee MK, & Park HJ. 2019. Exploring Factors Influencing Usage Intention of Chatbot - Chatbot in Financial Service, Journal of Korean Society for Quality Management 47(4):755-765. https://doi.org/10.7469/JKSQM.2019.47.4.755
  30. Li X, Hsieh JJP-A, & Rai A. 2013. Motivational Differences Across Post-Acceptance Information System Usage Behaviors: An Investigation in the Business Intelligence Systems Context. Information Systems Research 24(3):659-682. https://doi.org/10.1287/isre.1120.0456.
  31. Lim WM, Gunasekara A, Pallant JL, Pallant JI, & Pechenkina E. 2023. Generative AI and the future of education: Ragnarok or reformation? A paradoxical perspective from management educators. The International Journal of Management Education 21(2):100790. https://doi.org/10.1016/j.ijme.2023.100790.
  32. Lin HF. 2011. An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management 31(3):252-260. https://doi.org/10.1016/j.ijinfomgt.2010.07.006.
  33. Lu Y, Yang S, Chau PYK, & Cao Y. 2011. Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management 48(8):393-403. https://doi.org/10.1016/j.im.2011.09.006.
  34. Park JS, & Park HJ. 2024. Understanding Post-Pandemic Travel Intention: Boredom as a Key Predictor, Journal of Korean Society for Quality Management 52(1):1-21. https://doi.org/10.7469/JKSQM.2024.52.1.1.
  35. Park JS, Yoo JW, & Park H. 2024. Understanding user resistance of smart factory adoption: a focus on small and medium-sized enterprises. Asia Pacific Journal of Marketing and Logistics 36(7):1782-1800. https://doi.org/10.1108/APJML-09-2023-0896.
  36. Park MS, Park JS, Yoo JW, & Park HJ. 2022. Effects of the User Perception on Symbolic Adoption and Usage in Mandatory ATCIS-II Use, Journal of Korean Society for Quality Management 50(3):517-532. https://doi.org/10.7469/JKSQM.2022.50.3.517.
  37. Paul J, Ueno A, & Dennis C. 2023. ChatGPT and consumers: Benefits, Pitfalls and Future Research Agenda. International Journal of Consumer Studies 47(4):1213-1225. https://doi.org/10.1111/ijcs.12928.
  38. Rudolph J, Tan S, & Tan S. 2023. ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning and Teaching 6(1):342-363.
  39. Salvagno M, Taccone FS, & Gerli AG. 2023. Can artificial intelligence help for scientific writing? Critical Care 27(1):75. https://doi.org/10.1186/s13054-023-04380-2.
  40. Shin D. 2021. Embodying algorithms, enactive artificial intelligence and the extended cognition: You can see as much as you know about algorithm. Journal of Information Science 49(1):18-31. https://doi.org/10.1177/0165551520985495.
  41. Singh S, Olson ED, & Tsai CH. 2021. Use of service robots in an event setting: Understanding the role of social presence, eeriness, and identity threat. Journal of Hospitality and Tourism Management 49:528-537. https://doi.org/10.1016/j.jhtm.2021.10.014
  42. Song M, Du J, Xing X, & Mou J. 2022. Should the chatbot "save itself" or "be helped by others"? The influence of service recovery types on consumer perceptions of recovery satisfaction. Electronic Commerce Research and Applications 55:101199. https://doi.org/10.1016/j.elerap.2022.101199.
  43. Wang X, Lin X, & Shao B. 2023. Artificial intelligence changes the way we work: A close look at innovating with chatbots. Journal of the Association for Information Science and Technology 74(3):339-353. https://doi.org/10.1002/asi.24621.
  44. Williams MD, Rana NP, & Dwivedi YK. 2015. The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of Enterprise Information Management 28(3):443-488. https://doi.org/10.1108/JEIM-09-2014-0088.
  45. Wolf V, & Maier C. 2024. ChatGPT usage in everyday life: A motivation-theoretic mixed-methods study. International Journal of Information Management 79:102821. https://doi.org/10.1016/j.ijinfomgt.2024.102821.
  46. Xiao B, & Benbasat I. 2007. E-Commerce Product Recommendation Agents: Use, Characteristics, and Impact. MIS Quarterly 31(1):137-209. https://doi.org/10.2307/25148784.
  47. Xu Y, Zhou G, Cai R, & Gursoy D. 2024. When disclosing the artificial intelligence (AI) technology integration into service delivery backfires: Roles of fear of AI, identity threat and existential threat. International Journal of Hospitality Management 122:103829. https://doi.org/10.1016/j.ijhm.2024.103829.
  48. Yogeeswaran K, Zlotowski J, Livingstone M, Bartneck C, Sumioka H, & Ishiguro H. 2016. The interactive effects of robot anthropomorphism and robot ability on perceived threat and support for robotics research. Journal of Human-Robot Interaction 5(2):29-47. https://doi.org/10.5898/JHRI.5.2.Yogeeswaran.
  49. Yoo JW, & Park HJ. 2023. Understanding COVID-19 Vaccine Acceptance Intention: An Emotion-focused and Problem-focused Coping Perspective, Journal of Korean Society for Quality Management 51(4):643-662. https://doi.org/10.7469/JKSQM.2023.51.4.643.