DOI QR코드

DOI QR Code

Thermodynamics of Se(IV) Sorption Onto Ca-type Bentonil-WRK Montmorillonite

  • 투고 : 2024.06.04
  • 심사 : 2024.08.12
  • 발행 : 2024.09.30

초록

Se sorption onto Ca-type montmorillonite purified from Bentonil-WRK-a new research bentonite introduced by Korea Atomic Energy Research Institute-was examined under ambient conditions (pH 4-9, pe 7-9, I = 0.01 M CaCl2, and T = 25℃). Se(IV) was identified as the oxidation state responsible for weak sorption (Kd < 22 L·kg-1) by forming surface complexes with edge functional groups of the montmorillonite. Thermodynamic modeling, considering reaction mechanisms of outer-sphere complexation (≡AlOH+2 + HSeO3- ⇌ ≡AlOH3SeO3, log K = 0.50 ± 0.21), inner-sphere complexation (2≡AlOH + H2SeO3(aq) ⇌ (≡Al)2SeO3 + 2H2O(l), log K = 7.89 ± 0.51), and Ca2+-involved ternary complexation (≡AlOH + Ca2+ + SeO32- ⇌ ≡AlOHCaSeO3, log K = 7.69 ± 0.28) between selenite and aluminol sites of montmorillonite, acceptably reproduced the batch sorption data. Outer- and inner-sphere complexes are predominant Se(IV) forms sorbed in acidic (pH ≈ 4) and near-acidic (pH ≈ 6) regions, respectively, whereas ternary complexation accounts for Se(IV) sorption at neutral pHs under the ambient conditions. The experimental and modeling data generally extend a material-specific sorption database of Bentonil-WRK, which is essential for assessing its radionuclide retention performance as a buffer candidate of deep geological disposal system for high-level radioactive waste.

키워드

과제정보

This study was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korean Ministry of Science and ICT (Grant code: 2021M2E1A1085202).

참고문헌

  1. M.J. Apted and J. Ahn, Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed., Woodhead Publishing, Duxford, UK (2017).
  2. OECD Nuclear Energy Agency. International Features, Events and Processes (IFEP) List for the Deep Geological Disposal of Radioactive Waste Version 3.0, OECD Nuclear Energy Agency Report, NEA/RWM/R(2019)1 (2019).
  3. K. Son, K. Choi, J. Yang, H. Jeong, H. Kim, K. Chang, and G. Heo, "A Review of the Features, Events, and Processes and Scenario Development for Korean Risk Assessment of a Deep Geological Repository for High-Level Radioactive Waste", Nucl. Eng. Technol., 55(11), 4083-4095 (2023).
  4. V. Brendler, A. Vahle, T. Arnold, G. Bernhard, and T. Fanghanel, "RES3T-Rossendorf Expert System for Surface and Sorption Thermodynamics", J. Contam. Hydrol., 61(1-4), 281-291 (2003).
  5. M. Ochs, J.A. Davis, M. Olin, T.E. Payne, C.J. Tweed, M.M. Askarieh, and S. Altmann, "Use of Thermodynamic Sorption Models to Derive Radionuclide Kd Values for Performance Assessment: Selected Results and Recommendations of the NEA Sorption Project", Radiochim. Acta, 94(9-11), 779-785 (2006).
  6. T.E. Payne, V. Brendler, M. Ochs, B. Baeyens, P.L. Brown, J.A. Davis, C. Ekberg, D.A. Kulik, J. Lutzenkirchen, T. Missana, Y. Tachi, L.R. Van Loon, and S. Altmann, "Guidelines for Thermodynamic Sorption Modelling in the Context of Radioactive Waste Disposal", Environ. Model. Softw., 42, 143-156 (2013).
  7. O. Karnland, S. Olsson, and U. Nilsson. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials, Swedish Nuclear Fuel and Waste Management Company Technical Report, TR-06-30 (2006).
  8. L. Sun, J.T. Hirvi, T. Schatz, S. Kasa, and T.A. Pakkanen, "Estimation of Montmorillonite Swelling Pressure: A Molecular Dynamics Approach", J. Phys. Chem. C, 119(34), 19863-19868 (2015).
  9. B. Akinwunmi, J.T. Hirvi, S. Kasa, and T.A. Pakkanen, "Swelling Pressure of Na- and Ca-Montmorillonites in Saline Environments: A Molecular Dynamics Study", Chem. Phys., 528, 110511 (2020).
  10. M. Kim, J. Lee, S. Yoon, S. Choi, M. Kong, and J.S. Kim. Comparison and Analysis of Physical Properties Database for Buffer Material Candidates, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-9795/2023 (2023).
  11. M.H. Bradbury and B. Baeyens, "Modelling the Sorption of Zn and Ni on Ca-montmorillonite", Geochim. Cosmochim. Acta, 63(3-4), 325-336 (1999).
  12. M.H. Bradbury and B. Baeyens, "Sorption of Eu on Na- and Ca-montmorillonites: Experimental Investigations and Modelling With Cation Exchange and Surface Complexation", Geochim. Cosmochim. Acta, 66(13), 2325-2334 (2002).
  13. M.H. Bradbury and B. Baeyens, "Modelling Sorption Data for the Actinides Am(III), Np(V) and Pa(V) on Montmorillonite", Radiochim. Acta, 94(9-11), 619-625 (2006).
  14. M. Ghayaza, L. Le Forestier, F. Muller, C. Tournassat, and J.M. Beny, "Pb(II) and Zn(II) Adsorption Onto Na- and Ca-montmorillonites in Acetic Acid/Acetate Medium: Experimental Approach and Geochemical Modeling", J. Colloid Interface Sci., 361(1), 238-246 (2011).
  15. G.J. Lee, S. Yoon, and B.J. Kim, "Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository", J. Nucl. Fuel Cycle Waste Technol., 21(2), 225-234 (2023).
  16. J.Y. Goo, B.J. Kim, J.S. Kwon, and H.Y. Jo, "Bentonite Alteration and Retention of Cesium and Iodide Ions by Ca-bentonite in Alkaline and Saline Solutions", Appl. Clay Sci., 245, 107141 (2023).
  17. S. Choi, B.J. Kim, S. Seo, J.K. Lee, and J.S. Kwon, "Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)", J. Nucl. Fuel Cycle Waste Technol., 21(4), 427-438 (2023).
  18. S. Yoon, G.J. Lee, D.H. Lee, M.S. Kim, J.T. Kim, and J.S. Kim, "Evaluation of Thermal Properties for the Bentonil-WRK Bentonite", J. Nucl. Fuel Cycle Waste Technol., 22(1), 9-16 (2024).
  19. K. Kim, "iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal", J. Nucl. Fuel Cycle Waste Technol., 20(2), 255-258 (2022).
  20. J.W. Kim, H. Jang, D.H. Lee, H.H. Cho, J. Lee, M. Kim, and H. Ju, "A Modularized Numerical Framework for the Process-based Total System Performance Assessment of Geological Disposal Systems", Nucl. Eng. Technol., 54(8), 2828-2839 (2022).
  21. H.R. Cho, H.K. Kim, W. Cha, H. Ju, J. Kim, K. Kim, and W. Um. Analysis of the Solubilities of Radioactive Materials in Oxidative Groundwater Conditions - Geochemical Modeling, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-9156/2022 (2022).
  22. H.K. Kim, W. Cha, T.H. Kim, and H.R. Cho. Thermodynamic Evaluation of Solubility and Aqueous Chemical Reactions of Radionuclides Under KURT Groundwater Conditions: 21 Radionuclides, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-9797/2023 (2023).
  23. S. Goldberg, "Modeling Selenite Adsorption Envelopes on Oxides, Clay Minerals, and Soils Using the Triple Layer Model", Soil Sci. Soc. Am. J., 77(1), 64-71 (2013).
  24. S. Goldberg, "Modeling Selenate Adsorption Behavior on Oxides, Clay Minerals, and Soils Using the Triple Layer Model", Soil Sci., 179(12), 568-576 (2014).
  25. R.H. Neal and G. Sposito, "Selenium Mobility in Irrigated Soil Columns as Affected by Organic Carbon Amendment", J. Environ. Qual., 20(4), 808-814 (1991).
  26. L. Charlet, A.C. Scheinost, C. Tournassat, J.M. Greneche, A. Gehin, A. Fernandez-Martinez, S. Coudert, D. Tisserand, and J. Brendle, "Electron Transfer at the Mineral/Water Interface: Selenium Reduction by Ferrous Iron Sorbed on Clay", Geochim. Cosmochim. Acta, 71(23), 5731-5749 (2007).
  27. Th. Fanghanel, V. Neck, and J.I. Kim, "The Ion Product of H2O, Dissociation Constants of H2CO3 and Pitzer Parameters in the System Na+/H+/OH- /HCO3-/ CO32-/ClO4-/H2O at 25℃", J. Solution Chem., 25(4), 327-343 (1996).
  28. M. Altmaier, V. Metz, V. Neck, R. Muller, and Th. Fanghanel, "Solid-Liquid Equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the System Mg-Na-H-OH-Cl-H2O at 25℃", Geochim. Cosmochim. Acta, 67(19), 3595-3601 (2003).
  29. S. Choi and J.I. Yun, "Spectrophotometric Study of the Uranyl Monobenzoate Complex at Moderate Ionic Strength", Polyhedron, 161, 120-125 (2019).
  30. D.L. Parkhurst and C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey, Reston, VA (2013).
  31. D.G. Kinniburgh and D.M. Cooper, PhreePlot: Creating Graphical Output With PHREEQC (2011).
  32. E. Giffaut, M. Grive, Ph. Blanc, Ph. Vieillard, E. Colas, H. Gailhanou, S. Gaboreau, N. Marty, B. Made, and L. Duro, "Andra Thermodynamic Database for Performance Assessment: ThermoChimie", Appl. Geochem., 49, 225-236 (2014).
  33. I. Grenthe, F. Mompean, K. Spahiu, and H. Wanner, TDB-2 Guidelines for the Extrapolation to Zero Ionic Strength, OECD Nuclear Energy Agency, Issy-les-Moulineaux, France (2013).
  34. J. Doherty, Calibration and Uncertainty Analysis for Complex Environmental Models, Watermark Numerical Computing, Brisbane, Australia (2015).
  35. J. Lutzenkirchen, R. Marsac, D.A. Kulik, T.E. Payne, Z. Xue, S. Orsetti, and S.B. Haderlein, "Treatment of Multi-Dentate Surface Complexes and Diffuse Layer Implementation in Various Speciation Codes", Appl. Geochem., 55, 128-137 (2015).
  36. D. Peak, U.K. Saha, and P.M. Huang, "Selenite Adsorption Mechanisms on Pure and Coated Montmorillonite: An EXAFS and XANES Spectroscopic Study", Soil Sci. Soc. Am. J., 70(1), 192-203 (2006).
  37. W. Xu, H.B. Qin, J.M. Zhu, T.M. Johnson, D. Tan, C. Liu, and Y. Takahashi, "Selenium Isotope Fractionation During Adsorption Onto Montmorillonite and Kaolinite", Appl. Clay Sci., 211, 106189 (2021).
  38. G. Montavon, Z. Guo, J. Lutzenkirchen, E. Alhajji, M.A.M. Kedziorek, A.C.M. Bourg, and B. Grambow, "Interaction of Selenite With MX-80 Bentonite: Effect of Minor Phases, pH, Selenite Loading, Solution Composition and Compaction", Colloids Surf. A: Physicochem. Eng. Asp., 332(2-3), 71-77 (2009).
  39. B. Bar-Yosef and D. Meek, "Selenium Sorption by Kaolinite and Montmorillonite", Soil Sci., 144(1), 11-19 (1987).
  40. S. Goldberg and R.A. Glaubig, "Anion Sorption on a Calcareous, Montmorillonitic Soil-Selenium", Soil. Sci. Soc. Am. J., 52(4), 954-958 (1988).
  41. K.A. Boult, M.M. Cowper, T.G. Heath, H. Sato, T. Shibutani, and M. Yui, "Towards an Understanding of the Sorption of U(VI) and Se(IV) on Sodium Bentonite", J. Contam. Hydrol., 35(1-3), 141-150 (1998).
  42. P. Wang, A. Anderko, and D.R. Turner, "Thermodynamic Modeling of the Adsorption of Radionuclides on Selected Minerals. II: Anions", Ind. Eng. Chem. Res., 40(20), 4444-4455 (2001).
  43. T. Missana, U. Alonso, and M. Garcia-Gutierrez, "Experimental Study and Modelling of Selenite Sorption Onto Illite and Smectite Clays", J. Colloid Interface Sci., 334(2), 132-138 (2009).
  44. K. Shi, Y. Ye, N. Guo, Z. Guo, and W. Wu, "Evaluation of Se(IV) Removal From Aqueous Solution by GMZ Na-bentonite: Batch Experiment and Modeling Studies", J. Radioanal. Nucl. Chem., 299, 583-589 (2014).
  45. N. Mayordomo, U. Alonso, and T. Missana, "Analysis of the Improvement of Selenite Retention in Smectite by Adding Alumina Nanoparticles", Sci. Total Environ., 572, 1025-1032 (2016).
  46. J.P. Morel, N. Marmier, C. Hurel, and N. Morel-Desrosiers, "Thermodynamics of Selenium Sorption on Alumina and Montmorillonite", Cogent Chem., 1(1), 1070943 (2015).
  47. Y. Li, J. He, W. Zhou, Y. Shi, J. Wang, D. Xian, and C. Liu, "Influence of Colloids and Colloids' Coagulation on Selenite Sorption", Colloids Surf. A: Physicochem. Eng. Asp., 618, 126462 (2021).