DOI QR코드

DOI QR Code

Solubility of Trivalent Am, Eu, and Sm in the Synthetic KAERI Underground Research Tunnel Groundwater

  • Hee-Kyung Kim (Korea Atomic Energy Research Institute) ;
  • Hye-Ryun Cho (Korea Atomic Energy Research Institute) ;
  • Wansik Cha (Korea Atomic Energy Research Institute)
  • Received : 2024.03.27
  • Accepted : 2024.05.20
  • Published : 2024.09.30

Abstract

The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (SynDB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.

Keywords

Acknowledgement

This study was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (Grant Nos. 2021M2E1A1085202 to iKNSF and 2022M2D2A1A02063990). Authors thank for analytical supports (ICP-OES, ICP-MS and XRD) of the Radioactive Material Chemical Analysis Section, KAERI (project no. 522330-24).

References

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006). 
  2. R. Guillaumont, T. Fanghanel, J. Fuger, I. Grenthe, V. Neck, D. Palmer, and M.H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, 1st ed., Chemical Thermodynamics Vol. 5, Elsevier, Netherlands (2003). 
  3. M. Hakanen, H. Ervanne, and E. Puukko. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto: Radionuclide Migration Parameters for the Geosphere, Posiva Oy Report, Posiva 2012-41 (2014). 
  4. W. Runde, The Chemical Interactions of Actinides in the Environment, 26, 392, Los Alamos Scientific Laboratory, New Mexico (2000). 
  5. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). 
  6. H.K. Kim and H.R. Cho, "Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions", J. Nucl. Fuel Cycle Waste Technol., 20(4), 399-410 (2022). 
  7. IAEA Nuclear Data Services. Accessed Mar. 27 2024. Available from: https://www-nds.iaea.org/. 
  8. G.R. Choppin and E.N. Rizkalla, "Chapter 128 Solution Chemistry of Actinides and Lanthanides", in: Handbook on the Physics and Chemistry of Rare Earths, 18, 559-590 (1994). 
  9. R.H. Byrne and E.R. Sholkovitz, "Chapter 158 Marine Chemistry and Geochemistry of the Lanthanides", in: Handbook on the Physics and Chemistry of Rare Earths, 23, 497-593 (1996). 
  10. R.D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides", Acta Crystallogr. A, 32(5), 751-767 (1976). 
  11. V. Neck, T. Fanghaenel, and J.I. Kim. Aquatic Chemistry and Thermodynamic Modelling of Trivalent Actinides, Forschungszentrum Karlsruhe GmbH Technik und Umwelt Technical Report, FZKA--6110 (1998). 
  12. I. Grenthe, X. Gaona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith, and E.E. Moore, Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, Chemical Thermodynamics Vol. 14, NEA No. 7500, OECD/ NEA Publishing, France (2020). 
  13. H.R. Cho, H.K. Kim, H. Ju, J. Kim, and W. Um. Analysis of the Solubilities of Radioactive Materials in Oxidative Groundwater Conditions - Geochemical Modeling, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-9156/2022 (2022). 
  14. M. Grive, L. Duro, E. Colas, and E. Giffaut, "Thermodynamic Data Selection Applied to Radionuclides and Chemotoxic Elements: An Overview of the ThermoChimie-TDB", Appl. Geochem., 55, 85-94 (2015). 
  15. E.C. Jung, H.R. Cho, M.H. Baik, H. Kim, and W. Cha, "Time-resolved Laser Fluorescence Spectroscopy of UO2(CO3)34-", Dalton Trans., 43, 18831-18838 (2015). 
  16. H.K. Kim, S. Choi, E.C. Jung, H.R. Cho, J.I. Yun, and W. Cha, "TRLFS Study of Hydrolyzed Eu(III) Species", J. Lumin., 202, 469-474 (2018). 
  17. T. Kimura and G.R. Choppin, "Luminescence Study on Determination of the Hydration Number of Cm(III)", J. Alloys Compd., 213-214, 313-317 (1994). 
  18. T. Kimura, R. Nagaishi, Y. Kato, and Z. Yoshida, "Luminescence Study on Solvation of Americium(III), Curium(III) and Several Lanthanide(III) Ions in Nonaqueous and Binary Mixed Solvents", Radiochim. Acta, 89(3), 125-130 (2001). 
  19. K. Spahiu and J. Bruno. A Selected Thermodynamic Database for REE to be Used in HLNW Performance Assessment Exercises, Swedish Nuclear Fuel and Waste Management Co. Report, SKB TR 95-35 (1995). 
  20. F.H. Firsching and J. Mohammadzadei, "Solubility Products of the Rare-Earth Carbonates", J. Chem. Eng. Data, 31(1), 40-42 (1986). 
  21. L. Gordon, M.L. Salutsky, and H.H. Willard, Precipitation From Homogeneous Solution, John Wiley & Sons, Inc., New York (1959). 
  22. K. Binnemans, "Interpretation of Europium(III) Spectra", Coord. Chem. Rev., 295, 1-45 (2015). 
  23. X. Tan, M. Fang, and X. Wang, "Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review", Molecules, 15(11), 8431-8468 (2010). 
  24. G. Plancque, V. Moulin, P. Toulhoat, and C. Moulin, "Europium Speciation by Time-resolved Laser-induced Fluorescence", Anal. Chim. Acta, 478(1), 11-22 (2003). 
  25. J.I. Kim, R. Klenze, H. Wimmer, W. Runde, and W. Hauser, "A Study of the Carbonate Complexation of Cm(III) and Eu(III) by Time-resolved Laser Fluorescence Spectroscopy", J. Alloys Compd., 213-214, 333-340 (1994).