Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224B10200080).
References
- Paolo Castaldo, B. Palazzo, A. Mariniello, Effects of the axial force eccentricity on the time-variant structural reliability of aging rc cross-sections subjected to chloride-induced corrosion, Eng. Struct. 130 (2017) 261-274.
- Sanjeev Kumar Verma, Sudhir Singh Bhadauria, Saleem Akhtar, Probabilistic evaluation of service life for reinforced concrete structures, Chinese Journal of Engineering 2014 (2014) 1-8.
- Bruce R. Ellingwood, Risk-informed condition assessment of civil infrastructure: state of practice and research issues, Structure and infrastructure engineering 1 (1) (2005) 7-18.
- K. Tabara, K. Miyaguchi, M. Morioka, K. Takewaka, Hydration behavior and fixation ability of chloride ion by a variety of kinds of hardened cements added with CaO.2Al2O3, Cem. Sci. Concr. Technol. 65 (2011) 427-434, https://doi.org/10.14250/cement.65.427.
- C. Arya, N.R. Buenfeld, J.B. Newman, Factors influencing chloride-binding in concrete, Cement Concr. Res. 20 (1990) 291-300, https://doi.org/10.1016/0008-8846(90)90083-A.
- C. Arya, Y. Xu, Effect of cement type on chloride binding and corrosion of steel in concrete, Cement Concr. Res. 25 (1995) 893-902, https://doi.org/10.1016/0008-8846(95)00080-V.
- R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer, Chloride binding in GGBS concrete, Cement Concr. Res. 26 (1996) 1767-1773, https://doi.org/10.1016/S0008-8846(96)00180-9.
- H. Zibara, Doctoral Dissertation, Binding of External Chlorides by Cement Pastes, 2001.
- H.S. So, S.H. Choi, C.S. Seo, K.S. Seo, S.Y. So, Influence of temperature on chloride ion diffusion of concrete, J. Korea Concr. Inst. 26 (2014) 71-78, https://doi.org/10.4334/JKCI.2014.26.1.071 (in Korean).
- Hongyu Chen, Tingting Deng, Ting Du, Bin Chen, Miroslaw J. Skibniewski, Limao Zhang, An RF and LSSVM-NSGA-II method for the multi-objective optimization of high-performance concrete durability, Cement Concr. Compos. 129 (2022) 104446.
- Ha-Won Song, Seung-Jun Kwon, Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure, Cement Concr. Res. 39 (9) (2009) 814-824.
- Van Quan Tran, Viet Quoc Dang, Lanh Si Ho, Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach, Construct. Build. Mater. 323 (2022) 126578.
- ASTM C 1202, Electrical indication of concrete's ability to resist chloride ion penetration, in: Annual Book of American Society for Testing Materials, 4.02, 2000. Philadelphia.
- NT Build 443, Concrete, Hardened: Accelerated Chloride Penetration, Nordtest method, 1995.
- NT Build 492, Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments, Nordtest, Espoo, Finland (1999).
- S.H. Lee, S.J. Kwon, Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, J. Korea Concr. Inst. 24 (2012) 715-726, https://doi.org/10.4334/JKCI.2012.24.6.715 (in Korean).
- D.S. Choi, J.J. Choi, Relationship between chloride diffusivity and the fundamental properties of concrete, Korean Society of Hazard Mitigation. 9 (1) (2009) 15-20 (in Korean).
- A. Elahi, P.A.M. Basheer, S.V. Nanukuttan, Q.U.Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials, Construct. Build. Mater. 24 (2010) 292-299, https://doi.org/10.1016/j.conbuildmat.2009.08.045.
- A. Dousti, R. Rashetnia, B. Ahmadi, M. Shekarchi, Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite, Construct. Build. Mater. 49 (2013) 393-399, https://doi.org/10.1016/j.conbuildmat.2013.08.086.
- J.M. Frederisken, H.E. Sorensen, O. Klinghoffer, The effect of the w/c ratio on chloride transport into concrete-immersion, migration and resistivity tests. Danish road, Directorate, Copenhagen, HETEK report (1997) 54.
- B.H. Oh, S.Y. Jang, Prediction of diffusivity of concrete based on simple analytic equations, Cement Concr. Res. 34 (2004) 463-480, https://doi.org/10.1016/j.cemconres.2003.08.026.
- C. McNally, E. Sheils, Probability-based assessment of the durability characteristics of concretes manufactured using CEM II and GGBS binders, Construct. Build. Mater. 30 (2012) 22-29, https://doi.org/10.1016/j.conbuildmat.2011.11.029.
- R. Van Noort, M. Hunger, P. Spiesz, Long-term chloride migration coefficient in slag cement-based concrete and resistivity as an alternative test method, Construct. Build. Mater. 115 (2016) 746-759, https://doi.org/10.1016/j.conbuildmat.2016.04.054.
- S.E. Chidiac, M. Shafikhani, Electrical resistivity model for quantifying concrete chloride diffusion coefficient, Cem. Concr. Compos. 113 (2020) 103707, https://doi.org/10.1016/j.cemconcomp.2020.103707.
- X. Liu, H. Du, M.H. Zhang, A model to estimate the durability performance of both normal and light-weight concrete, Construct. Build. Mater. 80 (2015) 255-261, https://doi.org/10.1016/j.conbuildmat.2014.11.033.
- A. Pilvar, A.A. Ramezanianpour, H. Rajaie, S.M.M. Karein, Practical evaluation of rapid tests for assessing the chloride resistance of concretes containing silica fume, Comput. Concr. 18 (2016) 793-806, https://doi.org/10.12989/cac.2016.18.6.793.
- J. Yang, F.H. Wittmann, T. Zhao, Comparison of Different Test Methods to Determine the Diffusion Coefficient of chloride in Concrete/Vergleich unterschiedlicher Methoden zur Bestimmung des Diffusionskoeffizienten von Chlorid in Beton. Restoration of buildings and monuments, AW, Bishop (1993) Mechanical Properties of Concrete vol. 16, Portland Cement Association, Illinois, 2010, pp. 57-68.
- P. Jiang, L. Jiang, J. Zha, Z. Song, Influence of temperature history on chloride diffusion in high volume fly ash concrete, Construct. Build. Mater. 144 (2017) 677-685, https://doi.org/10.1016/j.conbuildmat.2017.03.225.
- F. Lollini, E. Redaelli, L. Bertolini, A study on the applicability of the efficiency factor of supplementary cementitious materials to durability properties, Construct. Build. Mater. 120 (2016) 284-292, https://doi.org/10.1016/j.conbuildmat.2016.05.031.
- R.M. Ferreira, J.P. Castro-Gomes, P. Costa, R. Malheiro, Effect of metakaolin on the chloride ingress properties of concrete, KSCE J. Civ. Eng. 20 (2016) 1375-1384, https://doi.org/10.1007/s12205-015-0131-8.
- M. Almarshoud, Enhanced Analysis Tools and Measurement Methods to Evaluate Concrete Transport Properties, Doctoral dissertation, University of Florida, 2019.
- F. Lollini, E. Redaelli, L. Bertolini, Effects of Portland cement replacement with limestone on the properties of hardened concrete, Cem. Concr. Compos. 46 (2014) 32-40, https://doi.org/10.1016/j.cemconcomp.2013.10.016.
- P.R. Spiesz, Durability of Concrete with Emphasis on Chloride Migration [Ph. d Thesis 1 (Research TU/e/Graduation TU/e), Built Environment], Technische Universiteit Eindhoven, 2013.
- T. Luping, J. Gulikers, On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete, Cement Concr. Res. 37 (2007) 589-595, https://doi.org/10.1016/j.cemconres.2007.01.006.
- M.D.A. Thomas, P.B. Bamforth, Modelling chloride diffusion in concrete, Cement Concr. Res. 29 (1999) 487-495, https://doi.org/10.1016/S0008-8846(98)00192-6.
- S.H. Lee, K.J. Shin, C.L. Kim, Mechanical properties of concrete using recycled coarse aggregate from nuclear power plant simulated concrete, J. Recycled Constr. Resour. 8 (2020) 167-174 (in Korean).
- EPRI (Electric Power Research Institute), Seismic Fragility and Seismic Margin Guidance for Seismic Probabilistic Risk Assessments, Egyptian Petroleum Research Institute, California, Palo Alto, 2018.
- ACI Committee 349, Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-13) Commentary, American Concrete Institute, Farmington Hills, MI, 2013.
- F. Barda, J. Hanson, W. Corley, Shear Strength of Low-Rise Walls with Boundary Elements: Reinforced Concrete Structures in Seismic Zones, Publication SP-53-8, American Concrete Institute, 1977.
- C.K. Gulec, A.S. Whittaker, Empirical equations for peak shear strength of low aspect ratio reinforced concrete walls, ACI Struct. J. 108 (2011).