DOI QR코드

DOI QR Code

Electrochemical method for determining the solubility of impurities in lead-bismuth eutectic using molten salt electrolytes

  • Taiqi Yin (Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Yongcheng Zhang (Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Lei Zhang (Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Tao Bo (Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Xiaoli Tan (MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University) ;
  • Weiqun Shi (Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences)
  • Received : 2024.03.26
  • Accepted : 2024.05.17
  • Published : 2024.10.25

Abstract

Traditional physical methods for measuring solubility were often affected by viscosity, density, and surface tension. In this study, we selected appropriate electrolytes to determine the solubility of impurities in the lead-bismuth circuit at reactor operating temperatures using electrochemical methods. Taking the measurement of the solubility of impurity Ce in liquid Bi as an example, we demonstrated that electrochemical methods can accurately determine its solubility in the LiCl-KCl molten salt. Furthermore, the successful measurement of other impurities such as La, Ce, U, and Mn in lead-bismuth eutectic (LBE) using the designed system has confirmed the universality of this method.

Keywords

Acknowledgement

This work was financially supported by the National Postdoctoral Program for Innovative Talents (BX2021327), the National Natural Science Foundation of China (22206194 and U2267222), the Ningbo Natural Science Foundation of China (2023J337), and Yongjiang Talent Introduction Programme (2021A-161-G).

References

  1. A. Alemberti, V. Smirnov, C.F. Smith, M. Takahashi, Overview of lead-cooled fast reactor activities, Prog. Nucl. Energy 77 (2014) 300-307.
  2. Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516.
  3. R.G. Ballinger, J. Lim, An overview of corrosion issues for the design and operation of high-temperature lead-and lead-bismuth-cooled reactor systems, Nucl. Technol. 147 (3) (2004) 418-435.
  4. C. Fazio, V. Sobolev, A. Aerts, S. Gavrilov, K. Lambrinou, P. Schuurmans, A. Gessi, P. Agostini, A. Ciampichetti, L. Martinelli, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies-2015 Edition, Organisation for Economic Co-Operation and Development, 2015. No. NEA-7268.
  5. J. Zhang, N. Li, Review of the studies on fundamental issues in LBE corrosion, J. Nucl. Mater. 373 (1-3) (2008) 351-377.
  6. R. Agarwal, Understanding uranium interactions with bismuth and lead-bismuth eutectic: using calorimetric measurements, Thermochim. Acta 699 (2021) 178913.
  7. G. Gregori, A. Aerts, K. Gladinez, K. Rosseel, T. Doneux, J. Lim, Electrochemical measurement of solubility product of metal oxides in liquid metals by coulometric titration of oxygen, Electrochim. Acta 432 (2022) 141202.
  8. V. Volkovich, D. Maltsev, L. Yamshchikov, A. Osipenko, Thermodynamic properties of uranium in liquid gallium, indium and their alloys, J. Nucl. Mater. 464 (2015) 263-269.
  9. M. Weinstein, J.F. Elliott, Thermodynamic properties of the manganese-lead-bismuth system, J. Electrochem. Soc. 110 (7) (1963) 792.
  10. S. Rouquette-Sanchez, G.S. Picard, Solubility and diffusion of metallic iron in liquid Bi metal at 450 ◦C, Electrochem. Commun. 6 (9) (2004) 944-954.
  11. V. Volkovich, D. Maltsev, L. Yamshchikov, S.Y. Melchakov, A. Shchetinskiy, A. Osipenko, M. Kormilitsyn, Thermodynamic properties of uranium in Ga-In based alloys, J. Nucl. Mater. 438 (1-3) (2013) 94-98.
  12. S. Im, S.L. Shang, N.D. Smith, A.M. Krajewski, T. Lichtenstein, H. Sun, B. J. Bocklund, Z.K. Liu, H. Kim, Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling, Acta Mater. 223 (2022) 117448.
  13. L. Brissonneau, F. Beauchamp, O. Morier, C. Schroer, J. Konys, A. Kobzova, F. Di Gabriele, J.L. Courouau, Oxygen control systems and impurity purification in LBE: learning from DEMETRA project, J. Nucl. Mater. 415 (3) (2011) 348-360.
  14. A. Basin, A. Kaplun, A. Meshalkin, N. Uvarov, The LiCl-KCl binary system, Russ. J. Inorg. Chem. 53 (2008) 1509-1511.
  15. P. Bagri, M.F. Simpson, Potentiometric measurement of activity of rare earth chlorides (La, Gd, Ce, Nd) in LiCl-KCl eutectic salt, Electrochim. Acta 259 (2018) 1120-1128.
  16. G.L. Fredrickson, G. Cao, P.K. Tripathy, M.R. Shaltry, S.D. Herrmann, T.-S. Yoo, T. Y. Karlsson, D.C. Horvath, R. Gakhar, A.N. Williams, Electrochemical measurements in molten salt systems: a Guide and perspective, J. Electrochem. Soc. 166 (13) (2019) D645.
  17. O. Shirai, T. Iwai, Y. Suzuki, Y. Sakamura, H. Tanaka, Electrochemical behavior of actinide ions in LiCl-KCl eutectic melts, J. Alloys Compd. 271 (1998) 685-688.
  18. W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixedconducting electrodes and application to the system Li3Sb, J. Electrochem. Soc. 124 (10) (1977) 1569.
  19. T.Q. Yin, K. Liu, Y.L. Liu, Y.D. Yan, G.L. Wang, Z.F. Chai, W.Q. Shi, Electrochemical and thermodynamic properties of uranium on the liquid bismuth electrode in LiCl-KCl eutectic, J. Electrochem. Soc. 165 (14) (2018) D722-D730.
  20. V. Kober, V. Lebedev, I. Nichkov, S. Raspopin, A. Belousov, State of lanthanum, cerium and yttrium in bismuth solutions, Russ. J. Phys. Chem. 45 (1971) 569-572.
  21. D. Schweitzer, J. Weeks, Liquid metal fuel constitutions. III. Liquidus curves of the bismuth-fission products systems, Trans. Am. Soc. Metals 54 (1961).
  22. R. Pleasance, The solubilities of niobium, cerium, and strontium in liquid bismuth, J. Inst. Met. 88 (1959).